by the way matrix multiplication is defined (which is why it was defined that way).

The above should be old hat, but what’s coming now is probably new. For \(T \in \mathcal{L}(\mathbb{R}^m; \mathbb{R}^n) \), we define the \textit{operator norm} of \(T \) by

\[
\|T\| = \inf \left\{ C > 0 : \|T(x)\| \leq C \|x\|, \forall x \in \mathbb{R}^m \right\}.
\]

Here \(\|T(x)\| \) is using the norm of \(\mathbb{R}^m \), \(\|x\| \) is using the norm of \(\mathbb{R}^n \). Basically what we’re saying is that if \(T \) starts with a small vector \(x \) but comes back with \(T(x) \) being really big, then \(T \) has a large norm.

Theorem: If \(T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \), then \(\|T\| < \infty \), i.e., there exists some finite number \(C \) so that \(\|T(x)\| \leq C \|x\| \) holds for all \(x \in \mathbb{R}^n \) (since the only way that the norm could be infinite is if no such \(C \) existed).

Proof: Let \(B \) be the matrix of \(T \). Then

\[
T(x) = Bx = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \cdot x \\ \vdots \\ b_m \cdot x \end{pmatrix},
\]

where \(b_i \) is the transpose of the \(i^{th} \) row of \(B \), by definition of matrix multiplication. So,

\[
\|T(x)\|^2 = (b_1 \cdot x)^2 + \cdots + (b_m \cdot x)^2 \\
\leq \|b_1\|^2 \|x\|^2 + \cdots + \|b_m\|^2 \|x\|^2 \\
= \left(\sum_{i=1}^m \sum_{j=1}^n b_{ij}^2 \right) \|x\|^2.
\]

Thus

\[
\sqrt{\sum_{i=1}^m \sum_{j=1}^n b_{ij}^2}
\]

serves as \(C \), showing that the norm is finite, and this in fact gives an upper bound for the norm. It certainly doesn’t in general equal the norm: just consider the identity from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \). The norm of this transformation is clearly 1, but our bound is \(\sqrt{2} \).

Example: If \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) is given by

\[
T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 \\ x_2 \end{pmatrix},
\]

\(\copyright 2012, \) T. Vogel
determine $\|T\|$. (Note: our upper bound is that it’s less than or equal to $\sqrt{5}$.)

Answer: Certainly $\|Tx\| = \sqrt{4x_1^2 + x_2^2} \leq \sqrt{4x_1^2 + 4x_2^2} = 2 \|x\|$ holds for every x, so $\|T\| \leq 2$. (Since 2 is an element of the set of which $\|T\|$ is the infimum.) On the other hand, $\left\| T \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\| = 2 = 2 \left\| \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\|$, so no number C which is less than 2 can be in the set
\{ $C > 0 : \|T(x)\| \leq C \|x\|, \forall x \in \mathbb{R}^m$ \}. Thus the infimum of the set must be exactly 2, which is therefore $\|T\|$.

Proposition: $\|T(x)\| \leq \|T\| \|x\|$ holds for all T, x. (Generalization of the Cauchy-Schwartz inequality.)

Proof: This is pretty much straight from the definition of operator norm. Since $\|T\|$ is defined as an infimum, there is a sequence $C_k \in \{ C > 0 : \forall x \in \mathbb{R}^n, \|T(x)\| \leq C \|x\| \}$ which converges to $\|T\|$. We have
$$\|T(x)\| \leq C_k \|x\|$$
holding for all x, k. Looking at any particular x and taking k to infinity, we get
$$\|T(x)\| \leq \|T\| \|x\|,$$
as desired.
Definition of differentiability (11.2)

First off, differentiability of a function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is simply that the derivative exists. Then differentiability implies continuity. One might hope that differentiability of a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is simply that the partials exist. However, this is a very weak condition.

Example: Define \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) by \(f(x, y) = 0 \) if \(x \) or \(y \) is zero, otherwise \(f = 1 \). This has partial derivatives at the origin:

\[
f_x(0, 0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} = 0,
\]
and similarly for \(y \). But \(f \) is not continuous at the origin. More impressive is the following example.

Example: Define \(f \) by

\[
f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}.
\]

We’ve seen this before: the limit doesn’t exist at the origin, so \(f \) is not continuous there. However, the partials of \(f \) exist everywhere:

\[
f_x(x, y) = \begin{cases} \frac{(x^2 + y^2)y - 2x^2y}{(x^2 + y^2)^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases},
\]
where you have to use the definition to find the partial at the origin. You can find \(f_y(x, y) \) similarly. But we wouldn’t want to call \(f \) differentiable at the origin, since it’s not even continuous there. So, we need the proper generalization of derivative from \(\mathbb{R}^1 \).

Recall the differential approximation: that \(h f'(a) \) is a very good approximation of \(f(a + h) - f(a) \).

Example from calc I: \(\sqrt{68} \) can be approximated by taking \(f(x) = \sqrt{x} \), \(a = 64 \), \(h = 4 \), so

\[
\sqrt{68} - \sqrt{64} \approx 4f'(64) = 4 \left(\frac{1}{2} \right) 64^{-1/2} = \frac{1}{4},
\]
so our approximation is that

\[
\sqrt{68} \approx 8 \frac{1}{4}.
\]
Essentially what the differential approximation is saying is that the tangent line is a good approximation to the curve. (picture) If $\Delta f = f(a + h) - f(a)$ and $df = h f'(a)$, then we’re saying that df is a good approximation to Δf. In fact, the difference goes to zero more rapidly than h:

$$\lim_{h \to 0} \frac{\Delta f - df}{h} = \lim_{h \to 0} \frac{f(a + h) - f(a) - h f'(a)}{h} = \lim_{h \to 0} \frac{f(a + h) - f(a) - f'(a) h}{h} = 0.$$

This is the idea that we want to generalize to \mathbb{R}^n. Let’s look right now at $f : \mathbb{R}^2 \to \mathbb{R}$. We want to say that f is differentiable at (a, b) iff there exists a tangent plane at $(a, b, f(a, b))$ which in some sense is a sufficiently good approximation to the graph of the function near (a, b). The general plane through that point is $z = f(a, b) + A(x - a) + B(y - b)$. For f to be differentiable, we’ll want A and B so that the plane is a very good approximation to the graph near (a, b). More specifically, look at a point $(a + h, b + k)$ near (a, b). The point on the graph above this point is $(a + h, b + k, f(a + h, b + k))$. The point on the plane above this point is $(a + h, b + k, f(a, b) + Ah + Bk)$. Even if f is merely continuous at (a, b) we’d have

$$\lim_{(h, k) \to (0, 0)} f(a + h, b + k) - f(a, b) - Ah - Bk = 0$$

for any A and B, so that’s not enough. Instead, we want A and B so that $f(a + h, b + k) - f(a, b) - Ah - Bk$ goes to zero faster than $\|(h, k)\|$.

Definition (in special case that $f : \mathbb{R}^2 \to \mathbb{R}$): $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (a, b) iff there exist numbers A and B so that

$$\lim_{(h, k) \to (0, 0)} \frac{f(a + h, b + k) - [f(a, b) + Ah + Bk]}{\|(h, k)\|} = 0.$$

Example: Prove that $f(x, y) = x^2 + 2y^2$ is differentiable at $(1, 2)$.

Proof: We have $f(1 + h, 2 + k) = (1 + h)^2 + 2(2 + k)^2 = 9 + 2h + h^2 + 8k + 2k^2 = f(1, 2) + 2h + 8k + h^2 + 2k^2$. Take A to be 2 and B to be 8. Then

$$\frac{f(1 + h, 2 + k) - [f(1, 2) + 2h + 8k]}{\sqrt{h^2 + k^2}} = \frac{h^2 + 2k^2}{\sqrt{h^2 + k^2}}.$$

Using the polar coordinate trick, replacing h by $r \cos \theta$ and k by $r \sin \theta$, the last fraction turns into $r \cos^2 \theta + 2r \sin^2 \theta$, which clearly goes to zero.