cover H. This will be based on the set T of open balls with rational radii and centers in Q^n. Then we’ll show that this countable subcover actually admits a finite subcover. This will be based on the Bolzano-Weierstrass Theorem.

Proof of Borel Covering Lemma: For each $x \in H$, consider the ball $B_r(x)$ (x). The collection of all such balls pretty clearly covers H, since each point of H is the center of one of these balls. Take the ball of T promised by 2, above, for $B_r(x)$ (x). This ball covers x, and if we do this for each $x \in H$, we cover H by balls in T. But T is countable, so at this point we can say that there is a countable collection of balls which cover H: call them $B_q_1(a_1), B_q_2(a_2), \ldots$, (for simplicity B_1,B_2,\cdots) corresponding to x_1,x_2,\cdots in H. (Note that this gives a countable collection of the original balls which cover H, since $B_i \subseteq B_r(x_i)(x_i)$, but we’re going to stick with the B_i’s). I claim that there is a finite subcover of H of these balls B_i of T. Suppose not. Then in particular, for any k, the collection B_1,\cdots, B_k does not cover H, so there is a point $x_k \in H - \bigcup_{i=1}^k B_k$. Since H is bounded, the sequence $\{x_k\}$ is bounded, and therefore by Bolzano-Weierstrass, there is a convergent subsequence $\{x_{k_j}\}$ which converges to some point a. Since H is closed, the point a must be in H. But H is covered by the collection $\{B_j\}$, so in particular $a \in B_m$ for some m. Since B_m is open and $x_{k_j} \to a$, we must have $x_{k_j} \in B_m$ for j sufficiently large. But this can’t happen: once k_j is larger than m, $x_{k_j} \in H - \bigcup_{i=1}^{k_j} B_i$, and we’ve subtracted off B_m in this. Therefore there is a finite subcollection of the balls $B_{q_1}(a_1), B_{q_2}(a_2), \cdots$ which cover H. Finally, each of these balls satisfy $B_{q_i}(a_i) \subseteq B_r(x_i)(x_i)$, so we get the finite collection of balls promised.

Theorem (Hard part of Heine-Borel Theorem): If $H \subseteq \mathbb{R}^n$ is closed and bounded, H is compact.

Proof: Suppose that we have an open cover $U_\alpha, \alpha \in A$ of H. Every point $x \in H$ is covered by at least one of these sets. So, for each x, put it inside one of the U_α’s, call it $U_{\alpha}(x)$. Since $U_{\alpha}(x)$ is open, there is an $r(x) > 0$ so that $B_r(x)(x) \subseteq U_{\alpha}(x)$. This is the function r that we want to apply the Borel Covering lemma to. By the lemma, there is a finite collection $B_{r(x_i)}(x_i), i = 1, \cdots, m$ which cover H. But $B_{r(x_i)}(x_i) \subseteq V_{\alpha(x_i)}$, so $\{V_{\alpha(x_i)}\}, i = 1, \cdots, m$ covers H. Thus every open cover of H admits a finite subcover, and H is compact.

Note:

We need both closed and bounded to conclude that a subset of \mathbb{R}^n is compact. Simply bounded is not enough: we’ve seen that $(0,1)$ is not compact. Closed but not bounded is not enough either: $[0,\infty)$ is covered by $\{(-1,n)\}, n \in \mathbb{N}$, but there is no finite subcover.

©2012, T. Vogel 64