Limits of functions (9.3)

First off, we’re thinking of *vector-valued functions*, i.e., \(f : U \to \mathbb{R}^m \), \(U \subseteq \mathbb{R}^n \).

Example:
Let \(f(x, y) = \frac{xy}{x^2 + y^2} \). This is defined for all \((x, y) \neq (0, 0)\), so domain \(U \) of \(f \) is \(U = \mathbb{R}^2 - (0, 0) \). (Note: I should probably be writing \(f(x, y) \) instead, since I want to think of vectors in \(\mathbb{R}^n \) as column vectors. Well, sometimes I will and sometimes I won’t.) This \(f \) maps \(U \) into \(\mathbb{R}^1 \).

What would a function \(g \) which maps a subset of \(\mathbb{R}^2 \) into \(\mathbb{R}^2 \) look like? (Notation note: In these notes, I’ll use \(g \) for a vector-valued function to agree with the book’s notation. On the other hand, I don’t know how to do bold-faced on a chalk-board, so I’ll write it as \(\vec{g} \) in class.) Well, since we’re getting vectors out, it would be something like

\[
\vec{g} \left(\begin{array}{c}
x \\
y \
\end{array} \right) = \left(\begin{array}{c}
xy \\
x^2 + 3xy \
\end{array} \right).
\]

In general, if \(g : U \subseteq \mathbb{R}^n \to \mathbb{R}^m \), \(g \) will have \(m \) component functions. We can write this as

\[
\vec{g} \left(\begin{array}{c}
x_1 \\
\vdots \\
x_n \
\end{array} \right) = \left(\begin{array}{c}
g_1(x) \\
\vdots \\
g_m(x) \
\end{array} \right).
\]

The domain of a vector valued function is generally taken to be the largest set of \(x \)'s for which all of the component functions are defined (unless this is specifically restricted).

Example: \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) given by

\[
f \left(\begin{array}{c}
x \\
y \
\end{array} \right) = \left(\begin{array}{c}
1/(1 - x^2 - y^2) \\
\ln(xy) \
\end{array} \right).
\]

For the first component, we need \(x^2 + y^2 \neq 1 \), i.e., everything except the unit circle. For the second component, need \(xy > 0 \), i.e., either both \(x \) and \(y \) are positive or both \(x \) and \(y \) are negative. So, the natural domain of \(f \) is everything inside the first and third quadrants, except for the quarters of the unit circles there. (sketch).
The definition of limit of a function is pretty much a generalization of what we saw in 409.

Definition: Suppose \(f : U \subseteq \mathbb{R}^n \to \mathbb{R}^m \), \(L \in \mathbb{R}^m \), \(a \in \mathbb{R}^n \). Suppose that \(f \) is defined in some open ball \(V \) containing \(a \), except possibly at \(a \) itself. We say \(\lim_{x \to a} f(x) = L \) iff \(\forall \varepsilon > 0 \ \exists \delta > 0 \) so that \(0 < \|x - a\| < \delta \) implies \(\|f(x) - L\| < \varepsilon \). (Picture for \(m = n = 2 \).)

Example: Suppose \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) is given by \(f(x, y) = (2x, 3y) \).

Prove, straight from the definition, that \(\lim_{(x, y) \to (1, 1)} f(x, y) = (2, 3) \),

Note: for readability, I’ll write \(\lim_{(x, y) \to (1, 1)} f(x, y) = (2, 3) \), but we really think of vectors in \(\mathbb{R}^n \) as column vectors. I may also write it as \(\lim_{(x, y)^T \to (1, 1)^T} f(x, y)^T = (2, 3)^T \),

where \(T \) means matrix transpose. Anyway.

Given \(\varepsilon > 0 \), we seek \(\delta > 0 \) so that \(0 < \|(x, y) - (1, 1)\| < \delta \) implies \(\|(2x, 3y) - (2, 3)\| < \varepsilon \). I’ll use the idea of finding something that is i) larger than \(\|(2x, 3y) - (2, 3)\| \), ii) simpler than \(\|(2x, 3y) - (2, 3)\| \), and iii) still going to zero.

Since \((2x - 2)^2 \leq (3x - 3)^2 \) for all \(x \), we can certainly say \(\|(2x, 3y) - (2, 3)\| = \sqrt{(2x - 2)^2 + (3y - 3)^2} \leq \sqrt{(3x - 3)^2 + (3y - 3)^2} = 3 \|(x, y) - (1, 1)\| \).

Since we want \(\|(2x, 3y) - (2, 3)\| \) to be less than \(\varepsilon \), this inspires us to take \(\delta \) to be \(\frac{\varepsilon}{3} \). Once we’ve done the above work, the proof is easy: given \(\varepsilon > 0 \), take \((x, y) \) with \(0 < \|(x, y) - (1, 1)\| < \frac{\varepsilon}{3} \). Then certainly \(\|(x, y) - (1, 1)\| < \frac{\varepsilon}{3} \), which implies \(\sqrt{(3x - 3)^2 + (3y - 3)^2} < \varepsilon \). But since \(\|(2x, 3y) - (2, 3)\| \leq \sqrt{(3x - 3)^2 + (3y - 3)^2} \), this implies \(\|(2x, 3y) - (2, 3)\| < \varepsilon \), as desired.

Sequential characterization of limit of a function:

\[
\lim_{x \to a} f(x) = L \quad \text{iff} \quad \lim_{k \to \infty} f(x_k) = L
\]

©2012, T. Vogel

66