Recall that, back in section 8.3, I proved that \(f : \mathbb{R} \to \mathbb{R} \) is continuous iff \(f^{-1}(\Omega) \) for every open set \(\Omega \). It’s time to generalize. First we need a lemma, though. This says that there is a statement about relatively open sets which is analogous to the definition of a (plain vanilla) open set. This is part of Remark 8.27, section 8.3, which we didn’t need until now.

Lemma: \(U \subseteq E \) is relatively open in \(E \) iff \(\forall a \in U \) there exists \(\varepsilon > 0 \) so that \(B_\varepsilon(a) \cap E \subseteq U \).

Proof: "\(\Rightarrow \)" First suppose that \(U \) is relatively open in \(E \). Then there exists an open set \(A \) so that \(U = E \cap A \). Since \(A \) is open and \(U \) is a subset of \(A \), for any \(a \in U \) there is an \(\varepsilon > 0 \) so that \(B_\varepsilon(a) \subseteq A \). But then \(B_\varepsilon(a) \cap E \subseteq A \cap E = U \).

"\(\Leftarrow \)" Conversely, suppose that \(U \) has the property that \(\forall a \in U \) there exists \(\varepsilon > 0 \) so that \(B_\varepsilon(a) \cap E \subseteq U \). For each \(a \in U \), find the appropriate \(\varepsilon \), and call it \(\varepsilon(a) \). Set \(A = \bigcup_{a \in A} B_\varepsilon(a) \). This is certainly an open set, since it’s the union of open sets. I claim that \(U = A \cap E \). Certainly if \(a \in U \), then \(a \in B_\varepsilon(a) \), hence in \(A \). Also, since \(U \subseteq E \), \(a \in E \). Thus \(a \in A \cap E \), and \(U \subseteq A \cap E \). For the other containment, take \(x \in A \cap E \). Since \(x \in A \), \(x \) must be in \(B_\varepsilon(a) \) for some \(a \in A \). Since \(x \in E \) as well, \(x \in B_\varepsilon(a) \cap E \). But by choice of \(\varepsilon \), we must have \(x \in U \).

Theorem: \(f : E \to \mathbb{R}^m \) is continuous on \(E \) iff \(f^{-1}(\Omega) \) is relatively open in \(E \) for every open set \(\Omega \) in \(\mathbb{R}^m \).

Proof: First suppose that \(f \) is continuous on \(E \), and that \(\Omega \subseteq \) is open. If \(f^{-1}(\Omega) \) is empty, it’s open, so assume that \(f^{-1}(\Omega) \) is non-empty, and take \(a \in f^{-1}(\Omega) \). Then \(f(a) \in \Omega \). Since \(\Omega \) is open, there is \(\varepsilon > 0 \) so that \(B_\varepsilon(f(a)) \subseteq \Omega \). Since \(f \) is continuous at \(a \), there is \(\delta > 0 \) so that \(\|x - a\| < \delta \Rightarrow x \in E \) implies \(\|f(x) - f(a)\| < \varepsilon \). In other words, everything in \(B_\delta(a) \cap E \) gets taken by \(f \) to within \(\varepsilon \) of \(f(a) \), hence into \(\Omega \). This says that \(B_\delta(a) \cap E \subseteq f^{-1}(\Omega) \). This is true for arbitrary \(a \in f^{-1}(\Omega) \), so by the lemma, \(f^{-1}(\Omega) \) is relatively open in \(E \).

Now suppose that inverse images of open sets are relatively open. Take an arbitrary \(a \in E \) and an \(\varepsilon > 0 \). We have that \(B_\varepsilon(f(a)) \) is an open set, hence \(f^{-1}(B_\varepsilon(f(a))) \) is relatively open in \(E \). Since \(a \in f^{-1}(B_\varepsilon(f(a))) \), by the lemma, there is a \(\delta > 0 \) so that \(B_\delta(a) \cap E \subseteq f^{-1}(B_\varepsilon(f(a))) \). Now untangle this statement. What it’s saying is that if you take \(f \) of any point of \(E \) that’s within \(\delta \) of \(a \), you must end up in the \(\varepsilon \) ball around \(f(a) \). This is just the statement that \(x \in E \), \(\|x - a\| < \delta \) implies \(\|f(x) - f(a)\| < \varepsilon \), i.e., that \(f \) is continuous at \(a \), and hence on \(E \) since \(a \) was arbitrary.
Proposition: \(f^{-1}(\Omega) \) is relatively open for each open set \(\Omega \subseteq \mathbb{R}^m \) iff \(f^{-1}(C) \) is relatively closed for each closed set \(C \subseteq \mathbb{R}^m \). This gives a third way of characterizing continuity, but you don’t see it nearly as much as the statement about relatively open sets.

Proof: "\(\implies \)" Take a closed set \(C \). Then \(C^c \) is open, thus \(f^{-1}(C^c) \) is relatively open in \(E \). But I claim that \(f^{-1}(C^c) = E - f^{-1}(C) \). It’s just chasing the definition: \(a \in f^{-1}(C^c) \) iff \(f(a) \in C^c \), i.e., \(f(a) \notin C \), which is the same as \(a \notin f^{-1}(C) \), i.e., \(a \in E - f^{-1}(C) \). So, \(E - f^{-1}(C) \) is relatively open in \(E \), which we’ve seen is the same as \(f^{-1}(C) \) is relatively closed in \(E \).

"\(\impliedby \)" Take an open set \(\Omega \) and look at complements, just as in the previous part.

Note: Images of open sets under continuous maps need not be open. Here’s an example.

Example: \(f : \mathbb{R} \to \mathbb{R} \) given by \(f(x) = \sin x \). Then \(f((0,2\pi)) = [-1,1] \).

We can say something about images of compact and connected sets, however.

Theorem: If \(H \) is compact, \(f : H \to \mathbb{R}^m \) continuous, then \(f(H) \) is compact.

Proof: Suppose that \(\{V_\alpha : \alpha \in A\} \) is an open cover of \(f(H) \). We want to show that there is a finite subcover. I claim that the collection \(\{f^{-1}(V_\alpha) : \alpha \in A\} \) covers \(H \). The reason: if \(x \in H \), then \(f(x) \in f(H) \), so \(f(x) \in V_{\alpha_0} \) for some \(\alpha_0 \), thus \(x \in f^{-1}(V_{\alpha_0}) \). Now, the collection \(\{f^{-1}(V_\alpha) : \alpha \in A\} \) is not an open cover of \(H \), since all we know about each \(f^{-1}(V_\alpha) \) is that they are relatively open in \(H \), but this will be enough. Since each \(f^{-1}(V_\alpha) \) is relatively open in \(H \), there is an open set \(U_\alpha \) so that \(U_\alpha \cap H = f^{-1}(V_\alpha) \). The collection \(\{U_\alpha : \alpha \in A\} \) is an open cover of \(H \). Therefore, there is a finite subcover \(U_{\alpha_1}, \ldots, U_{\alpha_k} \). Since these cover \(H \), clearly their intersections with \(H \) cover \(H \), so \(f^{-1}(V_{\alpha_1}), \ldots, f^{-1}(V_{\alpha_k}) \) cover \(H \). But then \(V_{\alpha_1}, \ldots, V_{\alpha_k} \) cover \(f(H) \): \(y \in f(H) \) iff \(\exists x \in H \) so that \(f(x) = y \) (maybe more than \(1 \) \(x \)), so there is \(V_{\alpha_j} \) with \(x \in f^{-1}(V_{\alpha_j}) \), so \(y \in V_{\alpha_j} \).

Note:

- Continuous images of closed sets need not be closed: let \(f(x) = \frac{1}{x} \). If \(C = [1,\infty) \) (closed, not compact), then \(f(C) = (0,1] \) is not closed.
- Continuous images of bounded sets need not be bounded: take the same \(f \) as before, and look at \(f((0,1]) \). This is \([1,\infty) \).

©2012, T. Vogel 74