\qquad
MATH 172 Honors Exam 2
Spring 2024
Section 200
Solutions
P. Yasskin

Points indicated. Part credit possible. Show all work.

1	$/ ?$	5	$/ 10$	9	$/ 4$
2	$/ 8$	6	$/ 10$	10	$/ 8$
3	$/ 8$	7	$/ 10$	11	$/ 10$
4	$/ 8$	8	$/ 10$	12	$/ 10$
Total					

1. (? points) Circle each term in the general partial fraction expansion for $p(x)=\frac{5 x}{(x-2)\left(x^{4}-16\right)}$. (2 points for each correct term. -2 points for each incorrect term.)

$$
\begin{array}{cccc}
\frac{A}{x+2} & \frac{C}{x-2} & \frac{E x+F}{x^{2}-4} & \frac{I x+J}{x^{2}+4} \\
\frac{B}{(x+2)^{2}} & \frac{D}{(x-2)^{2}} & \frac{G x+H}{\left(x^{2}-4\right)^{2}} & \frac{K x+L}{\left(x^{2}+4\right)^{2}}
\end{array}
$$

Solution: We first need to factor the denominator and group factors:
$p(x)=\frac{5 x}{(x-2)\left(x^{2}+4\right)\left(x^{2}-4\right)}=\frac{5 x}{(x-2)\left(x^{2}+4\right)(x+2)(x-2)}=\frac{5 x}{(x+2)(x-2)^{2}\left(x^{2}+4\right)}$ $p(x)=\frac{A}{x+2}+\frac{C}{x-2}+\frac{D}{(x-2)^{2}}+\frac{I x+J}{x^{2}+4}$
2. (8 points) Find the coefficients in the partial fraction expansion

$$
\frac{48 x^{2}}{\left(x^{4}-81\right)}=\frac{A}{x-3}+\frac{B}{x+3}+\frac{C x+D}{x^{2}+9}
$$

Write the final expansion.
Solution: Clear the denominator: $48 x^{2}=A(x+3)\left(x^{2}+9\right)+B(x-3)\left(x^{2}+9\right)+(C x+D)\left(x^{2}-9\right)$
$x=3: \quad 48 \cdot 9=A(6)(18) \quad A=4$
$x=-3: \quad 48 \cdot 9=B(-6)(18) \quad B=-4$
$x=1$:
$48=A(4)(10)+B(-2)(10)+(C+D)(-8)=4(4)(10)-4(-2)(10)-8(C+D)=240-8(C+D)$
$x=-1$:

$$
\begin{array}{cccc}
48=A(2)(10)+B(-4)(10)+(-C+D)(-8)=4(2)(10)-4(-4)(10)-8(-C+D)=240-8(-C+D) \\
6=30-C-D & 6=30+C-D & C+D=24 & C-D=-24
\end{array}
$$

Add: $C=0 \quad$ Subtract: $2 D=48 \quad D=24$

$$
\frac{48 x^{2}}{\left(x^{4}-81\right)}=\frac{4}{x-3}+\frac{-4}{x+3}+\frac{24}{x^{2}+9}
$$

3. (8 points) Given that $\frac{3 x^{3}+18 x^{2}-81 x+162}{x\left(x^{2}+9\right)(x-3)^{2}}=\frac{2}{x}+\frac{3}{(x-3)^{2}}+\frac{-2 x}{x^{2}+9}$
compute $I=\int \frac{3 x^{3}+18 x^{2}-81 x+162}{x\left(x^{2}+9\right)(x-3)^{2}} d x$.
Solution: $\quad I=\int \frac{2}{x}+\frac{3}{(x-3)^{2}}+\frac{-2 x}{x^{2}+9} d x=2 \ln |x|-\frac{3}{x-3}-\ln \left|x^{2}+9\right|+C$
4. (8 points) Compute the improper integral $I=\int_{0}^{1} \frac{2 x}{\sqrt{1-x^{2}}} d x$.

Solution: Let $u=1-x^{2}$. Then $d u=-2 x d x$. We have $x=0$ at $u=1$ and $x=1$ at $u=0$.

$$
I=\int_{1}^{0} \frac{-1}{\sqrt{u}} d u=[-2 \sqrt{u}]_{1}^{0}=0-(-2 \sqrt{1})=2
$$

5. (10 points) The area between $x=1-(y-1)^{2}$ and the y-axis is rotated about the x-axis.

Find the volume swept out.
Solution: We do a y integral. Slices are horizontal and rotate into cylinders.
The radius is $r=y$ and the height is $h=x=1-(y-1)^{2}=2 y-y^{2}$.
The curve crosses the y-axis at $y=0$ and $y=2$. So the volume is

$$
\begin{aligned}
V= & \int_{0}^{2} 2 \pi r h d y=\int_{0}^{2} 2 \pi y\left(2 y-y^{2}\right) d y=\int_{0}^{2} 2 \pi\left(2 y^{2}-y^{3}\right) d y=2 \pi\left[2 \frac{y^{3}}{3}-\frac{y^{4}}{4}\right]_{0}^{2} \\
& =2 \pi\left(2 \frac{2^{3}}{3}-\frac{2^{4}}{4}\right)=32 \pi\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{8}{3} \pi
\end{aligned}
$$

6. (10 points) The area between $x=1-(y-1)^{2}$ and the y-axis is rotated about the y-axis.

Find the volume swept out.
Solution: We do a y integral. Slices are horizontal and rotate into disks.
The radius is $r=x=1-(y-1)^{2}=2 y-y^{2}$.
The curve crosses the y-axis at $y=0$ and $y=2$. So the volume is

$$
\begin{aligned}
V= & \int_{0}^{2} \pi r^{2} d y=\int_{0}^{2} \pi\left(2 y-y^{2}\right)^{2} d y=\pi \int_{0}^{2}\left(4 y^{2}-4 y^{3}+y^{4}\right) d y=\pi\left[4 \frac{y^{3}}{3}-y^{4}+\frac{y^{5}}{5}\right]_{0}^{2} \\
& =\pi\left(4 \frac{2^{3}}{3}-2^{4}+\frac{2^{5}}{5}\right)=\pi 2^{4}\left(\frac{2}{3}-1+\frac{2}{5}\right)=\pi 2^{4} \frac{10-15+6}{15}=\frac{16}{15} \pi
\end{aligned}
$$

7. (10 points) Solve the initial value problem $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=4 x^{3}$ with $y(1)=2$.

Solution: The equation is linear. The standard form is $\frac{d y}{d x}+\frac{2 x}{1+x^{2}} y=\frac{4 x^{3}}{1+x^{2}}$.
We identify $P=\frac{2 x}{1+x^{2}}$. The integration factor is $I=e^{\int P d x}=e^{\int \frac{2 x}{1+x^{2}} d x}=e^{\ln \left(1+x^{2}\right)}=1+x^{2}$.
We multiply the standard form by the integrating factor to get $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=4 x^{3}$.
(Back where we started.)
We identify the left as a product, $\frac{d}{d x}\left(\left(1+x^{2}\right) y\right)=4 x^{3}$ and integrate,
$\left(1+x^{2}\right) y=\int 4 x^{3} d x=x^{4}+C$.
To find C we plug in $x=1$ and $y=2$ to get $4=1+C$ or $C=3$.
We substitute back: $\quad\left(1+x^{2}\right) y=x^{4}+3 \quad$ and solve for $y=\frac{x^{4}+3}{1+x^{2}}$.
8. (10 points) Solve the initial value problem $3 \frac{d y}{d x}+\frac{2 x}{y^{2}}=\frac{1}{y^{2}}$ with $y(2)=1$.

Give the explicit solution.
Solution: We write the equation in separable form. $\frac{d y}{d x}=\frac{1-2 x}{3 y^{2}}$.
We separate and integrate. $\int 3 y^{2} d y=\int(1-2 x) d x$. So $y^{3}=x-x^{2}+C$.
To find C we plug in $x=2$ and $y=1$ to get $1=2-4+C$ or $C=3$.
We substitute back: $\quad y^{3}=x-x^{2}+3$ and solve for $y=\sqrt[3]{x-x^{2}+3}$.
9. (4 points) At the right is the slope field of the differential equation $\quad \frac{d y}{d x}=\frac{y-x}{y}$. On this plot sketch the solution curve satisfying the initial condition $\quad y(1)=4$.

Solution: The curve passes through $(1,4)$ and is always tangent to the line segments.

10. (8 points) The area between the curve $y=\frac{1}{x^{p}}$ and the x-axis for $1 \leq x \leq \infty$ is rotated about the x-axis, sweeping out a volume.
For which values of p is the volume finite? Be sure to check the border line case.
Solution: We do an x integral using disks. The radius is $r=y=\frac{1}{x^{p}}$.
So the area is $A=\pi r^{2}=\pi \frac{1}{x^{2 p}}$.
So the volume is
$V=\int_{1}^{\infty} \pi \frac{1}{x^{2 p}} d x=\pi \int_{0}^{\infty} x^{-2 p} d x=\pi\left[\frac{x^{-2 p+1}}{-2 p+1}\right]_{1}^{\infty}=\lim _{x \rightarrow \infty} \frac{\pi x^{-2 p+1}}{-2 p+1}-\frac{\pi}{-2 p+1}$
If $-2 p+1<0$, i.e. $p>\frac{1}{2}$ then the volume is finite, $\quad V=\frac{\pi}{2 p-1}$.
If $-2 p+1>0$, i.e. $p<\frac{1}{2}$ then the volume is infinite.
In the borderline case, if $p=\frac{1}{2}$, then the volume is $V=\int_{1}^{\infty} \pi \frac{1}{x} d x=[\pi \ln x]_{0}^{\infty}=\infty$
11. (10 points) A water tank is formed by rotating the curve $y=x^{3}$ for $y \leq 15$ meters about the y-axis. It is filled to a depth of 8 meters. Find the volume of water in the tank. HINT: Use horizontal slices.

Solution: The slice at height y is a circle of radius $r=x=y^{1 / 3}$.
So the cross sectional area is $A=\pi r^{2}=\pi y^{2 / 3}$. And the volume is

$$
V=\int_{0}^{8} A d y=\int_{0}^{8} \pi y^{2 / 3} d y=\pi\left[\frac{3 y^{5 / 3}}{5}\right]_{0}^{8}=\frac{3 \pi}{5} 8^{5 / 3}=\frac{3 \pi}{5} 2^{5}=\frac{96}{5} \pi
$$

12. (10 points) For the water tank described in the previous problem, find the work done to pump the water out the top of the tank.
Give your answer as a multiple of δg where δ is the density of water and g is the acceleration of gravity.

Solution: A horizontal slice at height y has area $A=\pi r^{2}=\pi y^{2 / 3}$.
Its volume is $d V=A d y=\pi y^{2 / 3} d y$ So its weight is $d F=\delta g d V=\delta g \pi y^{2 / 3} d y$.
The water is lifted a distance $D=15-y$. So the work done is

$$
\begin{aligned}
W & =\int D d F=\int_{0}^{8}(15-y) \delta g \pi y^{2 / 3} d y=\delta g \pi \int_{0}^{8}\left(15 y^{2 / 3}-y^{5 / 3}\right) d y \\
& =\delta g \pi\left[15 \frac{3 y^{5 / 3}}{5}-\frac{3 y^{8 / 3}}{8}\right]_{0}^{8}=\delta g \pi\left(9 \cdot 8^{5 / 3}-3 \frac{8^{8 / 3}}{8}\right)=\delta g \pi\left(9 \cdot 2^{5}-3 \cdot 2^{5}\right)=192 \delta g \pi
\end{aligned}
$$

