\qquad
MATH 172 Honors Exam 3
Spring 2024
Section 200
Points indicated. Part credit possible. Show all work.

1	$/ 8$	5	$/ 16$	8	$/ 10$
2	$/ 8$	6	$/ 12$	9	$/ 12$
3	$/ 8$	7	$/ 8$	10	$/ 13$
4	$/ 10$	Total		$/ 105$	

1. (8 points) Compute the following limits.
a. (2 pts) $\lim _{n \rightarrow \infty} \frac{n^{2}-3 n+2}{n+1}$
b. (2 pts) $\lim _{n \rightarrow \infty} \sqrt[n]{3 n+1}$
c. $(4 \mathrm{pts}) \lim _{n \rightarrow \infty}\left(2+\frac{3}{n}\right)^{4 n}$
2. (8 points) Find a power series for $\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t$ centered at $x=0$.

Hint: Write a series for each of the following:
a. $\frac{1}{1-r}=\sum_{n=0}^{\infty}$
b. $\frac{1}{1+t^{2}}=\sum_{\underline{n=0}}^{\infty}$
c. $\int \frac{1}{1+t^{2}} d t=\sum_{n=0}^{\infty}+C$
d. $\int_{0}^{x} \frac{1}{1+t^{2}} d t=\sum_{n=0}^{\infty}$
3. (8 points) Compute the sum of each series. Simplify each to a single rational number.
a. (4 pts) $S=\sum_{n=1}^{\infty} \frac{3^{n}+4^{n}}{12^{n}} \quad$ HINT: First split the terms into the sum of two fractions.
b. (4 pts) $S=\sum_{n=2}^{\infty} \frac{1}{n(n+1)} \quad$ HINT: First find the partial fraction expansion for $\frac{1}{n(n+1)}$.
4. (10 points) An egg is taken out of the refrigerator at $40^{\circ} \mathrm{F}$ and immediately put in a pot of boiling water at $212^{\circ} \mathrm{F}$. After 1 minute, the temperature has risen to $126^{\circ} \mathrm{F}$. How long will it take for the egg to reach $169^{\circ} \mathrm{F}$?
NOTE: These numbers have nothing to do with the real world.
They are chosen to make two fractions simplify to $\frac{1}{2}$ and $\frac{1}{4}$.
5. (16 points) A sequence is defined by $a_{1}=4$ and $a_{n+1}=2 \sqrt{a_{n}}+3$.
a. (2 pts) Find a_{2} and a_{3}.
b. (4 pts) Assuming the limit exists, find the possible values of the limit.
c. (4 pts) Prove the sequence is increasing or decreasing.
d. (4 pts) Prove the sequence is bounded above (if increasing) or below (if decreasing).
e. (2 pts) State the theorem that shows the sequence converges and state the limit.
6. (12 points) Determine whether each series is convergent or divergent. Name each Convergence Test(s) you use and check their assumptions. Use sentences!
a. (4 pts) $\sum_{n=0}^{\infty} \frac{5}{n^{3}+\sqrt[3]{n}}$
b. (4 pts) $\sum_{n=0}^{\infty} \frac{e^{n}}{\left(1+e^{n}\right)^{2}}$
c. $(4 \mathrm{pts}) \sum_{n=2}^{\infty} \frac{n+\sqrt{n}}{n^{2}+\sqrt{n}}$
7. (8 points) The series $S=\sum_{n=0}^{\infty} \frac{24 n^{2}}{\left(n^{3}+1000\right)^{3}}$ is convergent by the Integral Test.

If the series is approximated by its $10^{\text {th }}$ partial sum $S_{10}=\sum_{n=0}^{10} \frac{24 n^{2}}{\left(n^{3}+1000\right)^{3}}$, find a bound on the error in this approximation: $\quad E_{10}=S-S_{10}$.
8. (10 points) The series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{2}+1}}$ is: (Explain all reasoning. Circle your answer.)
a. Absolutely Convergent
b. Absolutely Divergent
c. Conditionally Convergent
d. Conditionally Divergent
e. Divergent
9. (12 points) A bucket contains 50 gal of salt water containing 5 lb of salt. Salt water with a concentration of $0.2 \frac{\mathrm{lb}}{\mathrm{gal}}$ is added at the rate $5 \frac{\mathrm{gal}}{\mathrm{min}}$.
The water is kept well mixed and drained at $5 \frac{\mathrm{gal}}{\mathrm{min}}$.
How much salt is in the bucket after 10 min ?
10. (13 points) Find the Interval of Convergence of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n} 3^{n}}(x-2)^{n}$. Follow these steps. Be sure to name any Convergence Tests you use.
a. (4 pts) Find the Radius of Convergence.
b. (4 pts) Check convergence at the left endpoint.

Be sure to name and check out any Convergence Tests you use.
$x=$ \qquad
c. (4 pts) Check convergence at the right endpoint.

Be sure to name and check out any Convergence Tests you use.
$x=$ \qquad
d. (1 pts) State the Interval of Convergence.

