\qquad
MATH 172 Honors Exam 3 Spring 2024
Section 200 Solutions P. Yasskin
Points indicated. Part credit possible. Show all work.

1	$/ 8$	5	$/ 16$	8	$/ 10$
2	$/ 8$	6	$/ 12$	9	$/ 12$
3	$/ 8$	7	$/ 8$	10	$/ 13$
4	$/ 10$	Total		$/ 105$	

1. (8 points) Compute the following limits.
a. (2 pts) $\lim _{n \rightarrow \infty} \frac{n^{2}-3 n+2}{n+1}$

Solution: $\lim _{n \rightarrow \infty} \frac{n^{2}-3 n+2}{n+1}=\lim _{n \rightarrow \infty} \frac{n-3+\frac{2}{n}}{1+\frac{1}{n}}=\infty$
b. (2 pts) $\lim _{n \rightarrow \infty} \sqrt[n]{3 n+1}$

Solution: $\lim _{n \rightarrow \infty} \sqrt[n]{3 n+1}=1$ because the $n^{\text {th }}$-root of any polynomial is 1 .
c. $(4 \mathrm{pts}) \lim _{n \rightarrow \infty}\left(2+\frac{3}{n}\right)^{4 n}$

Solution: Let $L=\lim _{n \rightarrow \infty}\left(2+\frac{3}{n}\right)^{4 n}$. Then

$$
\ln L=\lim _{n \rightarrow \infty} \ln \left(2+\frac{3}{n}\right)^{4 n}=\lim _{n \rightarrow \infty} 4 n \ln \left(2+\frac{3}{n}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(2+\frac{3}{n}\right)}{\frac{1}{4 n}} \stackrel{l^{\prime} H}{=} \lim _{n \rightarrow \infty} \frac{\frac{-\frac{3}{n^{2}}}{2+\frac{3}{n}}}{-\frac{1}{4 n^{2}}}=\lim _{n \rightarrow \infty} \frac{\frac{3}{n^{2}}}{2+\frac{3}{n}} \frac{4 n^{2}}{1}=6
$$

$$
L=e^{6}
$$

2. (8 points) Find a power series for $\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t$ centered at $x=0$. Hint: Write a series for each of the following:

Solution:

a. $\frac{1}{1-r}=\sum_{n=0}^{\infty} r^{n}$
b. $\frac{1}{1+t^{2}}=\sum_{\underline{n=0}}^{\infty}\left(-t^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} t^{2 n}$
c. $\int \frac{1}{1+t^{2}} d t=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+1}}{2 n+1}+C$
d. $\int_{0}^{x} \frac{1}{1+t^{2}} d t=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$
3. (8 points) Compute the sum of each series. Simplify each to a single rational number.
a. (4 pts) $S=\sum_{n=1}^{\infty} \frac{3^{n}+4^{n}}{12^{n}} \quad$ HINT: First split the terms into the sum of two fractions.

Solution: $\sum_{n=1}^{\infty} \frac{3^{n}+4^{n}}{12^{n}}=\sum_{n=1}^{\infty} \frac{3^{n}}{12^{n}}+\sum_{n=1}^{\infty} \frac{4^{n}}{12^{n}}=\sum_{n=1}^{\infty} \frac{1}{4^{n}}+\sum_{n=1}^{\infty} \frac{1}{3^{n}}$
Each sum is geometric. The ratios $\frac{1}{4}$ and $\frac{1}{3}$ are both less than 1 . So
$\sum_{n=1}^{\infty} \frac{3^{n}+4^{n}}{12^{n}}=\frac{\frac{1}{4}}{1-\frac{1}{4}}+\frac{\frac{1}{3}}{1-\frac{1}{3}}=\frac{1}{4-1}+\frac{1}{3-1}=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}$
b. (4 pts) $S=\sum_{n=2}^{\infty} \frac{1}{n(n+1)} \quad$ HINT: First find the partial fraction expansion for $\frac{1}{n(n+1)}$.

Solution: $\frac{1}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1} \quad 1=A(n+1)+B n$

$$
\begin{aligned}
& n=0 \quad \Rightarrow \quad A=1 \\
& n=-1 \quad \Rightarrow B=-1 \\
& \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} \quad S=\sum_{n=2}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right) \quad \text { This is telescoping. } \\
& S_{k}=\sum_{n=2}^{k}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{k}-\frac{1}{k+1}\right)=\frac{1}{2}-\frac{1}{k+1} \\
& S=\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{k+1}\right)=\frac{1}{2}
\end{aligned}
$$

4. (10 points) An egg is taken out of the refrigerator at $40^{\circ} \mathrm{F}$ and immediately put in a pot of boiling water at $212^{\circ} \mathrm{F}$. After 1 minute, the temperature has risen to $126^{\circ} \mathrm{F}$. How long will it take for the egg to reach $169^{\circ} F$?
NOTE: These numbers have nothing to do with the real world.
They are chosen to make two fractions simplify to $\frac{1}{2}$ and $\frac{1}{4}$.
Solution: Newton's Law of Heating says $\frac{d T}{d t}=-k\left(T-T_{A}\right)$ where T_{A} is the ambient temperature.
The solution is $T=T_{A}+\left(T_{o}-T_{A}\right) e^{-k t}$ where T_{o} is the initial temperature.
Here, $T_{A}=212$ and $T_{o}=40$. To find k, we plug in $t=1$ and $T=126$.
$126=212+(40-212) e^{-k 1} \quad e^{-k}=\frac{126-212}{40-212}=\frac{86}{172}=\frac{1}{2} \quad-k=\ln \frac{1}{2} \quad k=\ln 2$
So $T=212+(40-212) e^{-t \ln 2}=212-172 \cdot 2^{-t}$ We need to solve $169=212-172 \cdot 2^{-t}$.
$172 \cdot 2^{-t}=212-169=43 \quad 2^{-t}=\frac{43}{172}=\frac{1}{4} \quad t=2$
5. (16 points) A sequence is defined by $a_{1}=4$ and $a_{n+1}=2 \sqrt{a_{n}}+3$.
a. (2 pts) Find a_{2} and a_{3}.

Solution: $\quad a_{2}=2 \sqrt{a_{1}}+3=2 \sqrt{4}+3=7 \quad a_{3}=2 \sqrt{a_{2}}+3=2 \sqrt{7}+3$
b. (4 pts) Assuming the limit exists, find the possible values of the limit.

Solution: Assuming the limit exists, let $L=\lim _{n \rightarrow \infty} a_{n}$. Then $\lim _{n \rightarrow \infty} a_{n+1}=L$ also.
The recursion formula says

$$
\begin{array}{llll}
L=2 \sqrt{L}+3 & (L-3)^{2}=4 L & L^{2}-6 L+9=4 L & L^{2}-10 L+9=0 \\
(L-1)(L-9)=0 \quad & L=1,9 & \text { The limit must be } & 1
\end{array} \text { or } 9 .
$$

c. (4 pts) Prove the sequence is increasing or decreasing.

Solution: We will show a_{n} is increasing, i.e. $a_{n}<a_{n+1}$.
Init: $\quad a_{1}=4<a_{2}=7$
Induc: Assume $a_{k}<a_{k+1}$. Prove $a_{k+1}<a_{k+2}$.
Proof: $a_{k}<a_{k+1} \quad \sqrt{a_{k}}<\sqrt{a_{k+1}} \quad 2 \sqrt{a_{k}}+3<2 \sqrt{a_{k+1}}+3 \quad a_{k+1}<a_{k+2} \quad$ Proved.
d. (4 pts) Prove the sequence is bounded above (if increasing) or below (if decreasing).

Solution: We will show a_{n} is bounded above by 9 , i.e. $a_{n}<9$.
Init: $\quad a_{1}=4<9$
Induc: Assume $a_{k}<9$. Prove $a_{k+1}<9$.
Proof: $a_{k}<9 \quad \sqrt{a_{k}}<3 \quad 2 \sqrt{a_{k}}<6 \quad 2 \sqrt{a_{k}}+3<9 \quad a_{k+1}<9 \quad$ Proved.
e. (2 pts) State the theorem that shows the sequence converges and state the limit.

Solution: Since a_{n} is increasing and bounded above by 9 , the Bounded-Monotonic Sequence Theorem says it converges.
$\lim _{n \rightarrow \infty} a_{n}=9$.
6. (12 points) Determine whether each series is convergent or divergent.

Name each Convergence Test(s) you use and check their assumptions. Use sentences!
a. (4 pts) $\sum_{n=0}^{\infty} \frac{5}{n^{3}+\sqrt[3]{n}}$

Solution: $\frac{5}{n^{3}+\sqrt[3]{n}}<\frac{5}{n^{3}}$ and $\sum_{n=0}^{\infty} \frac{5}{n^{3}}$ converges because it is a p-series with $p=3>1$. So $\sum_{n=0}^{\infty} \frac{5}{n^{3}+\sqrt[3]{n}}$ also converges by the Simple Comparison Test.
b. (4 pts) $\sum_{n=0}^{\infty} \frac{e^{n}}{\left(1+e^{n}\right)^{2}}$

Solution: We apply the Integal Test. The function $\frac{e^{n}}{\left(1+e^{n}\right)^{2}}$ is positive and decreasing and $\int_{0}^{\infty} \frac{e^{n}}{\left(1+e^{n}\right)^{2}} d n=\left[\frac{-1}{1+e^{n}}\right]_{0}^{\infty}=\frac{-1}{1+e^{\infty}}-\frac{-1}{1+e^{0}}=0+\frac{1}{2}=\frac{1}{2}$
So the series converges by the Integal Test. OR Use a Simple Comparison with $\sum_{n=0}^{\infty} \frac{1}{e^{n}}$.
c. (4 pts) $\sum_{n=2}^{\infty} \frac{n+\sqrt{n}}{n^{2}+\sqrt{n}}$

Solution: We want to compare to $\sum_{n=2}^{\infty} \frac{n}{n^{2}}=\sum_{n=2}^{\infty} \frac{1}{n}$ which is the divergent harmonic series. However, we cannot tell if $\frac{n+\sqrt{n}}{n^{2}+\sqrt{n}}$ is smaller or larger than $\frac{1}{n}$.
So we cannot use the Simple Comparison Test. We use the Limit Comparison Test.

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n+\sqrt{n}}{n^{2}+\sqrt{n}} \frac{n}{1}=\lim _{n \rightarrow \infty} \frac{n^{2}+n \sqrt{n}}{n^{2}+\sqrt{n}}=1
$$

So the original series also diverges.
7. (8 points) The series $S=\sum_{n=0}^{\infty} \frac{24 n^{2}}{\left(n^{3}+1000\right)^{3}}$ is convergent by the Integral Test.

If the series is approximated by its $10^{\text {th }}$ partial sum $S_{10}=\sum_{n=0}^{10} \frac{24 n^{2}}{\left(n^{3}+1000\right)^{3}}$,
find a bound on the error in this approximation: $\quad E_{10}=S-S_{10}$.
Solution: $\quad E_{10}=\sum_{n=11}^{\infty} \frac{24 n^{2}}{\left(n^{3}+1000\right)^{3}}<\int_{10}^{\infty} \frac{24 n^{2}}{\left(n^{3}+1000\right)^{3}} d n=\left[\frac{-4}{\left(n^{3}+1000\right)^{2}}\right]_{10}^{\infty}=0-\frac{-4}{\left(10^{3}+1000\right)^{2}}$

$$
=\frac{4}{(2000)^{2}}=10^{-6}
$$

8. (10 points) The series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{2}+1}}$ is: (Explain all reasoning. Circle your answer.)
a. Absolutely Convergent
b. Absolutely Divergent
c. Conditionally Convergent
d. Conditionally Divergent
e. Divergent

Solution: The Related Absolute Series is $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$. We apply the Limit Comparison Test comparing to $\sum_{n=0}^{\infty} \frac{1}{n}$ which is a divergent harmonic series.
$L=\lim _{n \rightarrow \infty} \frac{a_{b}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n^{2}+1}} \frac{n}{1}=1 \quad$ So the absolute series is also divergent.
We apply the Alternating Series Test to the original series.
The $(-1)^{n}$ says it alternates. $\frac{1}{\sqrt{n^{2}+1}}$ decreases and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n^{2}+1}}=0$.
So the original series converges and so is Conditionally Convergent.
9. (12 points) A bucket contains 50 gal of salt water containing 5 lb of salt.

Salt water with a concentration of $0.2 \frac{\mathrm{lb}}{\mathrm{gal}}$ is added at the rate $5 \frac{\mathrm{gal}}{\mathrm{min}}$.
The water is kept well mixed and drained at $5 \frac{\mathrm{gal}}{\mathrm{min}}$.
How much salt is in the bucket after 10 min ?
Solution: Let $S(t)$ be the amount of salt in the bucket at time t.
The differential equation is $\quad \frac{d S}{d t}=0.2 \frac{\mathrm{lb}}{\mathrm{gal}} 5 \frac{\mathrm{gal}}{\mathrm{min}}-\frac{S \mathrm{lb}}{50 \mathrm{gal}} 5 \frac{\mathrm{gal}}{\mathrm{min}}$
It's linear. The standard form is: $\quad \frac{d S}{d t}+\frac{1}{10} S=1 \quad$ We identify $P=\frac{1}{10}$.
The integrating factor is $\quad I=\exp \left(\int P d t\right)=e^{t / 10}$.
We multiply the standard form and integrate:

$$
e^{t / 10} \frac{d S}{d t}-\frac{1}{10} e^{t / 10} S=e^{t / 10} \quad \frac{d}{d t}\left(e^{t / 10} S\right)=e^{t / 10} \quad e^{t / 10} S=\int e^{t / 10} d t=10 e^{t / 10}+C
$$

The initial condition is $S(0)=5$, or $t=0$ and $S=5$. So $e^{0} 5=10 e^{0}+C \quad C=-5$
So the solution is $\quad S=10-5 e^{-t / 10} . \quad S(10)=10-5 e^{-1}$
10. (13 points) Find the Interval of Convergence of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n} 3^{n}}(x-2)^{n}$. Follow these steps. Be sure to name any Convergence Tests you use.
a. (4 pts) Find the Radius of Convergence.

Solution: We apply the Ratio Test. $\left|a_{n}\right|=\frac{1}{\sqrt{n} 3^{n}}|x-2|^{n} \quad\left|a_{n+1}\right|=\frac{1}{\sqrt{n+1} 3^{n+1}}|x-2|^{n+1}$

$$
\rho=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{|x-2|^{n+1}}{\sqrt{n+1} 3^{n+1}} \frac{\sqrt{n} 3^{n}}{|x-2|^{n}}=\frac{|x-2|}{3}<1 \quad|x-2|<3 \quad R=3
$$

Open interval of convergence is $\quad(2-3,2+3)=(-1,5)$
b. (4 pts) Check convergence at the left endpoint.

Be sure to name and check out any Convergence Tests you use.
$x=$ \qquad
Solution: $x=-1 \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n} 3^{n}}(-3)^{n}=\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}} \quad p$-series with $p=\frac{1}{2}<1 \quad$ divergent
c. (4 pts) Check convergence at the right endpoint.

Be sure to name and check out any Convergence Tests you use.
$x=$ \qquad
Solution: $x=5 \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n} 3^{n}}(3)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} \quad$ Alt Ser, decr. $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{\sqrt{n}}=0 \quad$ convergent
d. (1 pts) State the Interval of Convergence.

Solution: (-1,5]

