Name \qquad
MATH 172H
Quiz 1
Spring 2024
Sections 200
Solutions
P. Yasskin

1. (8 points) A water tank is formed by rotating the curve $y=x^{4}$ for $y \leq 20$ meters about the y-axis. It is filled to a depth of 16 meters. Find the volume of water in the tank. Set up the integral using horizontal slices.
(Setting up the integral is 3 points.)

Solution: The slice at height y is a circle of radius $r=x=y^{1 / 4}$.
So the cross sectional area is $A=\pi r^{2}=\pi y^{1 / 2}$. And the volume is

$$
V=\int_{0}^{16} A d y=\int_{0}^{16} \pi y^{1 / 2} d y=\pi\left[\frac{2 y^{3 / 2}}{3}\right]_{0}^{16}=\frac{2 \pi}{3} 64=\frac{128}{3} \pi
$$

2. (12 points) A water tank is formed by rotating the curve $y=x^{4}$ for $y \leq 20$ meters about the y-axis. It is filled to a depth of 16 meters. Find the work done to pump the water out the top of the tank.
Answers can be given as a multiple of δg where
δ is the densty of water and g is the acceleration of gravity is g.
Don't simplify.
Solution: A horizontal slice at height y has area $A=\pi r^{2}=\pi y^{1 / 2}$. Its volume is $d V=A d y=\pi y^{1 / 2} d y$. So its weight is $d F=\delta g d V=\delta g \pi y^{1 / 2} d y$. It needs to be lifted a distance $D=20-y$. So the work done is

$$
\begin{aligned}
W & =\int D d F=\int_{0}^{16}(20-y) \delta g \pi y^{1 / 2} d y=\delta g \pi \int_{0}^{16}\left(20 y^{1 / 2}-y^{3 / 2}\right) d y \\
& =\delta g \pi\left[20 \frac{2 y^{3 / 2}}{3}-\frac{2 y^{5 / 2}}{5}\right]_{0}^{16}=\delta g \pi\left(20 \frac{2}{3} 16^{3 / 2}-\frac{2}{5} 16^{5 / 2}\right) \\
& =\delta g \pi\left(5 \frac{2^{3}}{3} 2^{6}-\frac{2}{5} 2^{10}\right)=\delta g \pi 2^{9}\left(\frac{5}{3}-\frac{4}{5}\right)=\delta g \pi 2^{9} \frac{13}{25}
\end{aligned}
$$

