Name
MATH 221 Exam 1, Version A Spring 2024
501
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

| $1-8$ | $/ 48$ | 11 | $/ 12$ |
| :---: | ---: | ---: | ---: |
| 9 | $/ 20$ | 12 | $/ 12$ |
| 10 | $/ 12$ | Total | $/ 104$ |

1. A point has spherical coordinates $(\rho, \phi, \theta)=\left(6, \frac{\pi}{6}, \frac{\pi}{4}\right)$. Find its cylindrical coordinates.
a. $(r, \theta, z)=\left(3, \frac{\pi}{6}, 3 \sqrt{3}\right)$
b. $(r, \theta, z)=\left(3, \frac{\pi}{4}, 3 \sqrt{3}\right)$
c. $(r, \theta, z)=\left(3, \frac{\pi}{6}, 6 \sqrt{3}\right)$
d. $(r, \theta, z)=\left(6 \sqrt{3}, \frac{\pi}{6}, 3\right)$
e. $(r, \theta, z)=\left(3 \sqrt{3}, \frac{\pi}{4}, 3\right)$
2. Which of the following is the contour plot of the function $f(x, y)=(x-2)^{4}+(y-3)^{4}$ ?
a.

b.

c.

d.

e.

3. A hiker starts at the point $P=(4,2)$, travels along the vector $\vec{a}=\langle 2,-2\rangle$, then along the vector $\vec{b}=\langle 1,3\rangle$ and finally along the vector $\vec{c}=\langle-1,2\rangle$. Along what vector should the hiker travel to get back to the starting point $P$ ?
a. $\langle-2,-3\rangle$
b. $\langle-6,-5\rangle$
c. $\langle 6,5\rangle$
d. $\langle 2,3\rangle$
e. $\langle 2,-1\rangle$
4. For what value of $p$ is $\vec{u}=\langle p, 5,3\rangle$ perpendicular to $\vec{v}=\langle 2,1, p\rangle$ ?
a. $p=-2$
b. $p=-1$
c. $p=0$
d. $p=1$
e. $p=2$
5. Find the volume of the parallelepiped with edge vectors $\vec{a}=\langle 4,2,0\rangle, \quad \vec{b}=\langle 1,0,-3\rangle$ and $\vec{c}=\langle 0,-1,2\rangle$.
a. -16
b. -12
c. 8
d. 12
e. 16
6. If $\hat{T}$ points Up and $\hat{B}$ points NorthEast, in what direction does $\hat{N}$ point?
a. SouthEast
b. SouthWest
c. NorthWest
d. Down
7. Which of the following is a plane perpendicular to the line $(x, y, z)=(1+3 t, 3+2 t, 4-t)$ ?
a. $3 x-2 y-z=3$
b. $-3 x+2 y+z=2$
c. $x+3 y+4 z=5$
d. $3 x+2 y-z=7$
e. $x-3 y+4 z=5$
8. Classify the quadratic surface: $-x^{2}+2 x+y^{2}+4 y-2 z^{2}+12 z=14$
a. Hyperbolic Paraboloid opening up in the $x$-direction and down in the $y$-direction
b. Hyperbolic Paraboloid opening up in the $y$-direction and down in the $x$-direction
c. Hyperboloid of 1 sheet
d. Hyperboloid of 2 sheets
e. Cone
9. (20 pts) Consider the twisted cubic $\vec{r}=\left(t^{3}, 3 t^{2}, 6 t\right)$. Compute each of the following. Note: $t^{4}+4 t^{2}+4=\left(t^{2}+2\right)^{2}$
a. (6 pts) Arc length between $(0,0,0)$ and $(1,3,6)$.
b. (6 pts) Curvature $\kappa=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^{3}}$.

HINT: Factor out an $18^{2}$.
c. (4 pts) Tangential acceleration, $a_{T}$. HINT: You do NOT need to compute $\hat{T}, \hat{N}$ or $\hat{B}$.
d. (4 pts) Normal acceleration, $a_{N}$. HINT: You do NOT need to compute $\hat{T}, \hat{N}$ or $\hat{B}$.
10. (12 pts) Write the vector, $\vec{a}=\langle 5,-3,1\rangle$, as a sum of two vectors $\vec{p}$ and $\vec{q}$, where $\vec{p}$ is parallel to $\vec{b}=\langle 6,2,4\rangle$ and $\vec{q}$ is perpendicular to $\vec{b}$.
11. (12 pts) Consider the helix $\vec{r}(\theta)=\langle 4 \cos \theta, 4 \sin \theta, 3 \theta\rangle$ for $0 \leq \theta \leq 2 \pi$.
a. Find its mass, if its linear density is $\delta(x, y, z)=z$.
b. Find the work done to push a bead along the helix if the force is $\vec{F}=\langle-2 y, 2 x, 0\rangle$.
12. (12 pts) Consider the planes:

$$
\begin{array}{lr}
P_{1}: & x+y-z=3 \\
P_{2}: & x+3 y+3 z=5
\end{array}
$$

Determine if they are parallel or intersecting. If they intersect, find the line of intersection. You MUST explain why they are or are not parallel.

