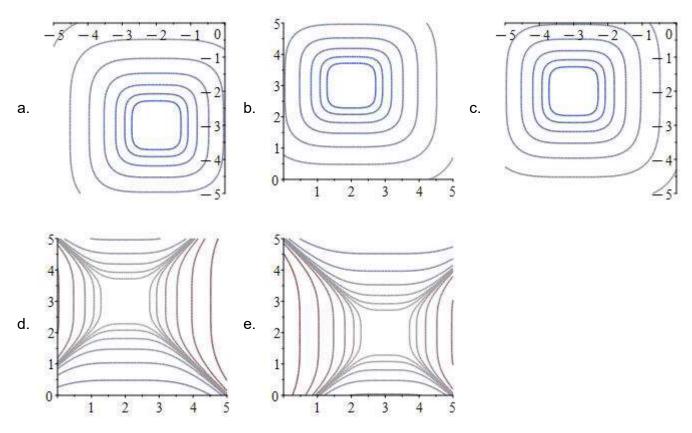
Name______
 Image: Name______
 Image: Image:

10


/12 Total

/104

Multiple Choice: (6 points each. No part credit.)

- **1**. A point has spherical coordinates $(\rho, \phi, \theta) = (6, \frac{\pi}{6}, \frac{\pi}{4})$. Find its cylindrical coordinates.
 - **a.** $(r,\theta,z) = \left(3,\frac{\pi}{6},3\sqrt{3}\right)$ **b.** $(r,\theta,z) = \left(3,\frac{\pi}{6},6\sqrt{3}\right)$ **c.** $(r,\theta,z) = \left(3,\frac{\pi}{4},3\sqrt{3}\right)$ **d.** $(r,\theta,z) = \left(6\sqrt{3},\frac{\pi}{6},3\right)$ **e.** $(r,\theta,z) = \left(3\sqrt{3},\frac{\pi}{4},3\right)$

2. Which of the following is the contour plot of the function $f(x,y) = (x-2)^4 + (y-3)^4$?

- **3**. A hiker starts at the point P = (4,2), travels along the vector $\vec{a} = \langle 2,-2 \rangle$, then along the vector $\vec{b} = \langle 1,3 \rangle$ and finally along the vector $\vec{c} = \langle -1,2 \rangle$. Along what vector should the hiker travel to get back to the starting point P?
 - **a**. (2,3)
 - **b**. $\langle -6, -5 \rangle$
 - **c**. $\langle 6,5 \rangle$
 - d. $\langle -2, -3 \rangle$
 - **e**. (2, -1)

- **4**. For what value of p is $\vec{u} = \langle p, 5, 3 \rangle$ perpendicular to $\vec{v} = \langle 2, 1, p \rangle$?
 - a. p = 2
 b. p = 1
 c. p = 0
 - **d**. p = -1
 - **e**. p = -2

- 5. Find the volume of the parallelepiped with edge vectors $\vec{a} = \langle 4, 2, 0 \rangle$, $\vec{b} = \langle 1, 0, -3 \rangle$ and $\vec{c} = \langle 0, -1, 2 \rangle$.
 - **a**. 16
 - **b**. 12
 - **c**. 8
 - **d**. −12
 - **e**. −16

6. If \hat{T} points Up and \hat{B} points NorthEast, in what direction does \hat{N} point?

- a. Down
- **b**. NorthWest
- **c**. SouthEast
- $\textbf{d}. \hspace{0.1 cm} \text{SouthWest} \hspace{0.1 cm}$
- **e**.

7. Which of the following is a plane perpendicular to the line (x, y, z) = (1 + 3t, 3 + 2t, 4 - t)?

a. 3x + 2y - z = 7 **b.** -3x + 2y + z = 2 **c.** x + 3y + 4z = 5 **d.** 3x - 2y - z = 3**e.** x - 3y + 4z = 5

- **8**. Classify the quadratic surface: $-x^2 + 2x + y^2 + 4y 2z^2 + 12z = 14$
 - **a**. Hyperboloid of 1 sheet
 - **b**. Hyperboloid of 2 sheets
 - c. Hyperbolic Paraboloid opening up in the *x*-direction and down in the *y*-direction
 - **d**. Hyperbolic Paraboloid opening up in the *y*-direction and down in the *x*-direction
 - e. Cone

- 9. (20 pts) Consider the twisted cubic $\vec{r} = (6t, 3t^2, t^3)$. Compute each of the following. Note: $4 + 4t^2 + t^4 = (2 + t^2)^2$
 - **a**. (6 pts) Arc length between (0,0,0) and (6,3,1).

b. (6 pts) Curvature $\kappa = \frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^3}$. HINT: Factor out an 18^2 .

c. (4 pts) Tangential acceleration, a_T . HINT: You do NOT need to compute \hat{T} , \hat{N} or \hat{B} .

d. (4 pts) Normal acceleration, a_N . HINT: You do NOT need to compute \hat{T} , \hat{N} or \hat{B} . **10**. (12 pts) Write the vector, $\vec{a} = \langle 5, 1, -3 \rangle$, as a sum of two vectors \vec{p} and \vec{q} , where \vec{p} is parallel to $\vec{b} = \langle 6, 4, 2 \rangle$ and \vec{q} is perpendicular to \vec{b} .

- **11.** (12 pts) Consider the helix $\vec{r}(\theta) = \langle 3\cos\theta, 3\sin\theta, 4\theta \rangle$ for $0 \le \theta \le 2\pi$.
 - **a**. Find its mass, if its linear density is $\delta(x, y, z) = z$.

b. Find the work done to push a bead along the helix if the force is $\vec{F} = \langle -2y, 2x, 0 \rangle$.

12. (12 pts) Consider the planes:

$$P_1: x + 3y + 3z = 5$$

 $P_2: x + y - z = 3$

Determine if they are parallel or intersecting. If they intersect, find the line of intersection. You MUST explain why they are or are not parallel.