Name
MATH 221 Exam 2, Version A Spring 2024
501
P. Yasskin

Multiple Choice: (9 points each. No part credit.)
Circle you answers here and bubble on the Scantron.

$1-9$	$/ 81$	11	$/ 12$
10	$/ 12$	12	$/ 105$

Show your work, in case I give some part credit.

1. Find the plane tangent to the surface $z=x y^{2}+x^{3} y$ at $(x, y)=(1,2)$. What is the z-intercept?
a. $c=-14$
b. $c=-6$
c. $c=0$
d. $c=6$
e. $c=14$
2. Find the plane tangent to the surface $x y z^{2}=6$ at $(x, y, z)=(3,2,1)$. What is the z-intercept?
a. $c=-12$
b. $c=-2$
c. $c=0$
d. $c=2$
e. $c=12$
3. A weather balloon measures the temperature and its gradient at $P=(3,4,2)$ to be:

$$
T=\left.70^{\circ} \quad \vec{\nabla} T\right|_{P}=\langle-3,2,2\rangle
$$

Approximate the temperature at $(x, y, z)=(3.2,3.7,2.2)$.
a. 68.4°
b. 69.2°
c. 70.2°
d. 70.8°
e. 71.2°
4. A weather balloon measures the temperature and its gradient at $P=(3,4,2)$ to be:

$$
T=70^{\circ} \quad \vec{\nabla} T_{P}=\langle-3,2,2\rangle
$$

If the balloon's velocity is $\vec{v}=\langle 2,4,-2\rangle$, how fast is the temperature changing as seen aboard the balloon? $\quad \frac{d T}{d t}=$
a. -2
b. -1
c. 0
d. 1
e. 2
5. The equation $x^{2} z+y z^{2}=z^{3}+6$ implicitly defines z as a function of (x, y) near the point $P=(x, y, z)=(2,3,1)$. Find $\left.\frac{\partial z}{\partial y}\right|_{P}$.
a. $\frac{\partial z}{\partial y}=\frac{-1}{13}$
b. $\frac{\partial z}{\partial y}=\frac{-1}{\sqrt[3]{6}}$
c. $\frac{\partial z}{\partial y}=\frac{-1}{7}$
d. $\frac{\partial z}{\partial y}=\frac{1}{7}$
e. $\frac{\partial z}{\partial y}=\frac{1}{13}$
6. Two marbles are located at $P=(a, b)$ and $X=(x, y)$. Their current positions and velocities are:

$$
P=(1,2) \quad X=(5,5) \quad \frac{d P}{d t}=\langle 15,-10\rangle \quad \frac{d X}{d t}=\langle 5,15\rangle
$$

How fast is the distance between them changing?
HINT: There are 4 intermediate variables.
a. $\frac{d D}{d t}=-1$
b. $\frac{d D}{d t}=1$
c. $\frac{d D}{d t}=3$
d. $\frac{d D}{d t}=5$
e. $\frac{d D}{d t}=7$
7. Queen Lena is flying the Centurian Eagle through the Force whose density is $F=x^{3} y^{2} z \frac{\text { yodons }}{\text { lightsec }^{3}}$. If she is located at $(x, y, z)=(1,2,3)$ and travels in the direction of maximum increase of the Force with speed $|\vec{v}|=3 \frac{\text { lightsec }}{\text { lightsec }}$, what is the rate she sees the Force increasing?
a. $\frac{d F}{d t}=3 \sqrt{91}$
b. $\frac{d F}{d t}=4 \sqrt{91}$
c. $\frac{d F}{d t}=6 \sqrt{91}$
d. $\frac{d F}{d t}=12 \sqrt{91}$
e. $\frac{d F}{d t}=48 \sqrt{91}$
8. If $f(x, y)=x^{2} \cos (x y)$ which of the following is FALSE?
a. $f_{x x}=2 \cos (x y)-4 x y \sin (x y)-x^{2} y^{2} \cos (x y)$
b. $f_{x y}=-3 x^{2} \sin (x y)-x^{3} y \cos (x y)$
c. $f_{y x}=-3 x^{2} \cos x y+x^{3} y \sin x y$
d. $f_{y y}=-x^{4} \cos (x y)$
9. The point $(2,-2)$ is a critical point of the function $f=y^{3}-x^{3}-6 x y$. Classify this critical point using the Second Derivative Test.
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Saddle Point
e. Test Fails

Work Out: (Points indicated. Part credit possible. Show all work.)
10. (12 pts) If the limit converges, prove it and find the limit.

If it diverges, give 2 curves which give different limits.
a. $(6 \mathrm{pts}) \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$
b. $(6 \mathrm{pts}) \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{3}}{\left(x^{2}+y^{2}\right)^{2}}$
11. (12 pts) Find the volume of the cylindrical can with the largest volume, if its surface area is $A=24 \pi$. HINT: The surface area is $A=2 \pi r h+2 \pi r^{2}$.

