Vector Analysis: © P. Yasskin 2002

Vector Analysis Theorems

1. The Fundamental Theorem of Calculus for Curves states that if $\vec{r}(t)$ is a nice curve in \mathbb{R}^n and f is a nice function in \mathbb{R}^n then

$$\int_{A}^{B} \vec{\nabla} f \cdot d\vec{s} = f(B) - f(A)$$

2. Green's Theorem states that if R is a nice region in \mathbb{R}^2 and ∂R is its boundary curve traversed counterclockwise and P and Q are a nice functions on R then

$$\iint\limits_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \oint\limits_{\partial R} P \, dx + Q \, dy$$

a. 2D Stokes' Theorem states that if R is a nice region in \mathbb{R}^2 and ∂R is its boundary curve traversed counterclockwise and $\vec{F} = (P(x,y), Q(x,y), 0)$ is a nice vector field on R then

$$\iint_{R} \vec{\nabla} \times \vec{F} \cdot \hat{k} \, dx \, dy = \oint_{\partial R} \vec{F} \cdot d\vec{s}$$

b. 2D Gauss' Theorem states that if R is a nice region in \mathbb{R}^2 and ∂R is its boundary curve traversed counterclockwise and $\vec{G} = (Q(x,y), -P(x,y), 0)$ is a nice vector field on R then

$$\iint\limits_{R} \vec{\nabla} \cdot \vec{G} \, dx \, dy = \oint\limits_{\partial R} \vec{G} \cdot d\vec{n}$$

3. Stokes' Theorem states that if S is a nice surface in \mathbb{R}^3 and ∂S is its boundary curve traversed counterclockwise as seen from the tip of the normal to S and \overrightarrow{F} is a nice vector field on S then

$$\iint\limits_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint\limits_{\partial S} \vec{F} \cdot d\vec{S}$$

4. Gauss' Theorem states that if V is a volume in \mathbb{R}^3 and ∂V is its boundary surface oriented outward from V and \vec{F} is a nice vector field on V then

$$\iiint\limits_{V} \vec{\nabla} \cdot \vec{F} \, dV = \iint\limits_{\partial V} \vec{F} \cdot d\vec{S}$$