Name \qquad Section
A) If your last name begins with A-F, consider the curve $\vec{r}(t)=\left(e^{t} \cos (t), e^{t} \sin (t), e^{t}\right)$.
B) If your last name begins with G-L, consider the curve $\vec{r}(t)=\left(3 t^{2}, 4 t^{3}, 3 t^{4}\right)$.
C) If your last name begins with $\mathrm{M}-\mathrm{R}$, consider the curve $\vec{r}(t)=\left(e^{t}, \sqrt{2} t, e^{-t}\right)$.
D) If your last name begins with $\mathrm{S}-\mathrm{Z}$, consider the curve $\vec{r}(t)=\left(t^{2}, 2 t, \ln (t)\right)$.
E) Anyone may consider the curve $\vec{r}(t)=(\sinh (t), \cosh (t), t)$.

Compute each of the following. Show your work. Simplify where possible.

1. velocity

$$
\vec{v}(t)=
$$

2. acceleration

$$
\vec{a}(t)=
$$

3. jerk

$$
\vec{j}(t)=
$$

4. speed (HINT: The quantity in the square root is a perfect square.) $|\vec{v}(t)|=$
5. arclength between $t=1$ and $t=2$
$L=$
6. unit tangent vector
$\hat{T}=$
7. $\vec{v} \times \vec{a}=$
8. $|\vec{v} \times \vec{a}|=$
9. unit binormal vector
$\vec{B}=$
10. unit normal vector
$\vec{N}=$
11. curvature
$\kappa=$
12. torsion
$\tau=$
13. tangential acceleration (compute in 2 ways)
$a_{T}=$
$a_{T}=$
14. normal acceleration (compute in 2 ways)
$a_{N}=$
$a_{N}=$
15. mass of a wire between $t=1$ and $t=2$ with linear density $\rho=x$ $M=$
16. work to move a bead along the wire from $t=1$ to $t=2$.

For curves A and E , the force is $\vec{F}=(-y, x, 0)$. For curves B, C and D , the force is $\vec{F}=(0, y, x)$.
$\vec{F}(\vec{r}(t))=$
$W=$

