Name	Section

MATH 221

Take Home Quiz 2

P. Yasskin

- A) If your last name begins with A-F, consider the curve $\vec{r}(t) = (e^t \cos(t), e^t \sin(t), e^t)$.
- B) If your last name begins with G-L, consider the curve $\vec{r}(t) = (3t^2, 4t^3, 3t^4)$.
- C) If your last name begins with M-R, consider the curve $\vec{r}(t) = (e^t, \sqrt{2}t, e^{-t})$.
- D) If your last name begins with S-Z, consider the curve $\vec{r}(t) = (t^2, 2t, \ln(t))$.
- E) Anyone may consider the curve $\vec{r}(t) = (\sinh(t), \cosh(t), t)$.

Compute each of the following. Show your work. Simplify where possible.

1. velocity $\vec{v}(t) =$

2. acceleration

$$\vec{a}(t) =$$

- 3. jerk $\overrightarrow{j}(t) =$
- **4**. speed (HINT: The quantity in the square root is a perfect square.) $|\vec{v}(t)| =$
- **5**. arclength between t = 1 and t = 2 L =
- **6.** unit tangent vector $\hat{T} =$

7.
$$\vec{v} \times \vec{a} =$$

8.
$$|\vec{v} \times \vec{a}| =$$

9. unit binormal vector

$$\vec{B} =$$

10. unit normal vector

$$\vec{N} =$$

11. curvature

12. torsion

$$\tau =$$

13. tangential acceleration (compute in 2 ways)

$$a_T =$$

$$a_T =$$

14. normal acceleration (compute in 2 ways)

$$a_N =$$

$$a_N =$$

15. mass of a wire between t = 1 and t = 2 with linear density $\rho = x$

$$M =$$

16. work to move a bead along the wire from t = 1 to t = 2.

For curves A and E, the force is $\vec{F} = (-y, x, 0)$. For curves B, C and D, the force is $\vec{F} = (0, y, x)$.

$$\vec{F}(\vec{r}(t)) =$$

$$W =$$