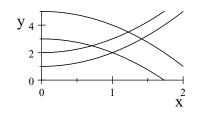
Name	_ Section	
MATH 221	Take Home Quiz 3	P. Yasskin

1. Compute the integral $\iint x \, dA$ over the region in the first quadrant bounded by $y = 1 + x^2$, $y = 2 + x^2$, $y = 3 - x^2$, and $y = 5 - x^2$.



- **a**. Define the curvilinear coordinates u and v by $y = u + x^2$ and $y = v x^2$. What are the 4 boundaries in terms of u and v?
- **b**. Solve for x and y in terms of u and v. Express the results as a position vector.

$$\vec{R}(u,v) = (x(u,v), y(u,v)) =$$

c. Find the coordinate tangent vectors:

$$\vec{e}_u = \frac{\partial \vec{R}}{\partial u} =$$
$$\vec{e}_v = \frac{\partial \vec{R}}{\partial v} =$$

d. Compute the Jacobian determinant:

$$\frac{\partial(x,y)}{\partial(u,v)} =$$

e. Compute the Jacobian factor:

$$J = \left| \frac{\partial(x, y)}{\partial(u, v)} \right| =$$

f. Compute the integral:

$$\iint x \, dA =$$

2. Find the Jacobian for spherical coordinates. The position vector is given by

 $\vec{R}(\rho,\theta,\varphi) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi)$

a. Find the coordinate tangent vectors:

$$\vec{e}_{\rho} = \frac{\partial \vec{R}}{\partial \rho} =$$
$$\vec{e}_{\theta} = \frac{\partial \vec{R}}{\partial \theta} =$$
$$\vec{e}_{\varphi} = \frac{\partial \vec{R}}{\partial \varphi} =$$

b. Compute the Jacobian determinant:

$$\frac{\partial(x,y,z)}{\partial(\rho,\theta,\varphi)} =$$

c. Compute the Jacobian factor:

$$J = \left| \frac{\partial(x, y, z)}{\partial(\rho, \theta, \varphi)} \right| =$$