Name \qquad Section \qquad

1. Compute the integral $\iint x d A$ over the region in the first quadrant bounded by $y=1+x^{2}, \quad y=2+x^{2}, \quad y=3-x^{2}, \quad$ and $y=5-x^{2}$.

a. Define the curvilinear coordinates u and v by $y=u+x^{2}$ and $y=v-x^{2}$. What are the 4 boundaries in terms of u and v ?
b. Solve for x and y in terms of u and v. Express the results as a position vector.
$\vec{R}(u, v)=(x(u, v), y(u, v))=$
c. Find the coordinate tangent vectors:

$$
\begin{aligned}
& \vec{e}_{u}=\frac{\partial \vec{R}}{\partial u}= \\
& \vec{e}_{v}=\frac{\partial \vec{R}}{\partial v}=
\end{aligned}
$$

d. Compute the Jacobian determinant:

$$
\frac{\partial(x, y)}{\partial(u, v)}=
$$

e. Compute the Jacobian factor:

$$
J=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=
$$

f. Compute the integral:
$\iint x d A=$
2. Find the Jacobian for spherical coordinates. The position vector is given by

$$
\vec{R}(\rho, \theta, \varphi)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi)
$$

a. Find the coordinate tangent vectors:

$$
\begin{aligned}
& \vec{e}_{\rho}=\frac{\partial \vec{R}}{\partial \rho}= \\
& \vec{e}_{\theta}=\frac{\partial \vec{R}}{\partial \theta}= \\
& \vec{e}_{\varphi}=\frac{\partial \vec{R}}{\partial \varphi}=
\end{aligned}
$$

b. Compute the Jacobian determinant:

$$
\frac{\partial(x, y, z)}{\partial(\rho, \theta, \varphi)}=
$$

c. Compute the Jacobian factor:

$$
J=\left|\frac{\partial(x, y, z)}{\partial(\rho, \theta, \varphi)}\right|=
$$

