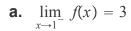
| Name                                                  | ID                   | SEC       | 1-13  | /52  |
|-------------------------------------------------------|----------------------|-----------|-------|------|
| Name                                                  | ID                   | <u> </u>  | 14    | /10  |
| MATH 151                                              | Final Exam Version B | Fall 2004 |       |      |
| Sections 501-503, 515-517 P. Yasskin                  |                      |           | 15    | /10  |
| On the front of the Scantron and on this sheet        |                      |           | 16    | /10  |
| write your Name, your University ID and your Section. |                      |           | 17    | /10  |
| Enter your Multiple Choice answers on the Scantron    |                      |           | 18    | /10  |
| and CIRCLE them on this sheet.                        |                      |           |       |      |
|                                                       |                      |           | Total | /102 |

Multiple Choice: (4 points each. No part credit. No calculator.)

- **1.** Find x so that (2,3) + x(2,-1) = (4,1)
  - **a.** x = 1 or 2
  - **b.** x = 1 only
  - **c.** x = 2 only
  - **d.** x = -1 only
  - e. No solutions
- **2.** Find an equation of the line through the point P = (1,-2,3) which is parallel to the vector  $\overrightarrow{AB}$ , where A = (4,2,1) and B = (1,-3,2).

**a.** 
$$(x,y,z) = (4-3t,2-5t,1+t)$$

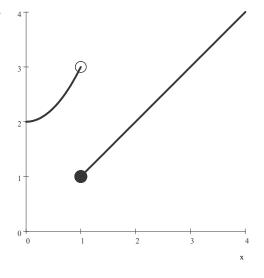
**b.** 
$$(x,y,z) = (4+t,2-2t,1+3t)$$


**c.** 
$$(x,y,z) = (1-3t,-2-5t,3+t)$$

**d.** 
$$(x,y,z) = (1+4t,-2+2t,3+t)$$

**e.** 
$$(x,y,z) = (1+t,-2-3t,3+2t)$$

- 3. Compute  $\lim_{x \to 4} \frac{\sqrt{x} 2}{x 4}$ 
  - **a.**  $\frac{1}{4}$
  - **b**.  $\frac{1}{2}$
  - **c.** 0
  - **d.**  $-\frac{1}{2}$
  - **e.**  $-\frac{1}{4}$


**4.** The graph of y = f(x) is shown at the right. Which of the following is FALSE?



**b.** 
$$\lim_{x \to 1^+} f(x) = 1$$

**c.** 
$$f(1) = 1$$

- **d.** f is continuous from the left at x = 1
- **e.** f is continuous from the right at x = 1



## 5. Which of the following is TRUE?

**a.** 
$$\lim_{x \to -11} |x + 11| = 11$$

**b.** 
$$\lim_{x \to 11^-} \frac{|x-11|}{x-11} = -1$$

**c.** 
$$\lim_{x \to -11^-} \frac{|x+11|}{x+11} = 11$$

**d.** 
$$\lim_{x \to 11} \frac{|x-11|}{x-11} = 1$$

**e.** 
$$\lim_{x \to -11^-} \frac{|x+11|}{x+11} = 0$$

**6.** Compute  $\lim_{h\to 0} \frac{\tan\left(\frac{\pi}{4} + h\right) - 1}{h}.$ 

HINT: This limit is f'(a) for what f and what a?

**c.** 
$$\frac{4}{3}$$

**e.** 
$$\frac{1}{2}$$

- 7. Compute  $\lim_{x\to 1} \frac{e^x e}{x-1}$ 
  - **a.** *e*
  - **b.**  $\frac{1}{e}$
  - **c.** 0
  - **d.** 2*e*
  - **e.**  $\frac{1}{2e}$
- **8.** If  $f(x) = \frac{7x-1}{9x+2}$  then f'(x) =
  - **a.**  $\frac{-5}{(9x+2)^2}$
  - **b.**  $\frac{-5}{(7x-1)^2}$
  - **c.**  $\frac{5}{(7x-1)^2}$
  - **d.**  $\frac{-23}{(9x+2)^2}$
  - **e.**  $\frac{23}{(9x+2)^2}$
- **9.** If  $f(x) = (\sin x)^{3x}$  then  $f'(x) = (\sin x)^{3x}$ 
  - **a.**  $(\sin x)^{3x}[3\ln(\sin x) + 3x^2\tan x]$
  - **b.**  $(\sin x)^{3x}[3\ln x\cos x + 3x\tan x]$
  - **c.**  $(\sin x)^{3x}[3\ln(\cos x) + 3x\cot x]$
  - **d.**  $(\sin x)^{3x} [3 \ln(\sin x) + 3x \cot x]$
  - **e.**  $(\sin x)^{3x}[3 \ln x \sin x + 3x \cot x]$

- **10.** Find the critical numbers of the function  $f(x) = x^{1/4}(x-3)^2$ .
  - **a.**  $3, \frac{1}{3}$
  - **b.**  $3, \frac{1}{3}, 1$
  - **c.**  $3, \frac{1}{3}, 0$
  - **d.** 3,0
  - **e.** 3, 0, -3
- **11.** A ball is dropped (initial velocity v(0) = 0) from the top of a tall building. Due to air resistance, its acceleration is only  $a(t) = 6 + 4e^{-t}$  m/sec<sup>2</sup>. How far does it fall in t = 1 sec?
  - **a.**  $3 4e^{-1}$  m
  - **b.**  $3 + 4e^{-1}$  m
  - **c.**  $10 4e^{-1}$  m
  - **d.**  $10 + 4e^{-1}$  m
  - **e.**  $6 + 4e^{-1}$  m
- **12.** Compute  $\int_{0}^{\pi/2} \sin(2x) dx$ 
  - a.  $-\pi$
  - **b.** −1
  - $\mathbf{c}. 0$
  - **d.** 1
  - e.  $\pi$
- **13.** Compute  $\int_{e^9}^{e^{81}} \frac{1}{x\sqrt{\ln x}} dx$ 
  - **a.**  $2\sqrt{72}$
  - **b.**  $2\sqrt{6}$
  - **c.**  $\sqrt{72}$
  - **d.**  $\sqrt{6}$
  - **e.** 12

Work Out: (10 points each. Part credit possible. Calculators allowed. Show all work.)

**14.** Find the equation of the tangent line to  $y = \frac{\ln x}{x^2}$  at x = e.

**15.** If you start with 4000 bacteria which double every 20 hours, how many bacteria will there be after 30 hours?

- **16.** In an ideal gas, the pressure P, volume V and the absolute temperature T are related by the equation PV = kT where k is a constant. At present P = 1 atm, V = 1000 liter and T = 275°K.
  - a. (5 points) If the volume is held constant and the temperature increases at the rate  $\frac{dT}{dt} = \frac{2^{\circ}K}{hr}$ , does the pressure increase or decrease and at what rate?

**b.** (5 points) If the temperature is held constant and the volume increases at the rate  $\frac{dV}{dt} = \frac{10 \text{ liter}}{\text{hr}}$ , does the pressure increase or decrease and at what rate?

17. The position of a particle is given by  $x = t^3 - 9t^2 + 33t$ . Find the minimum **velocity**. Explain why your critical point is an absolute minimum.

**18.** Use the Method of Riemann Sums with equal intervals and Right Endpoints to compute the integral  $\int_{2}^{4} 3x(x-2) dx$ .

Use the F.T.C. only to check your answer.

Hints: 
$$\sum_{i=1}^{n} 1 = n \qquad \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$