Fall 2004 Math 151

Exam 1A: Solutions
Mon, 04/Oct
(C)2004, Art Belmonte

1. (a) We have
$2 \mathbf{a}-3 \mathbf{b}=2[2,3]-3[1,-1]=[4,6]-[3,-3]=[1,9]$.
2. (c) From the figure below, we have $\mathbf{a}+\mathbf{v}=\mathbf{b}$, from which we conclude $\mathbf{v}=\mathbf{b}-\mathbf{a}$.

3. (d) With $\mathbf{a}=[-2,3]$ and $\mathbf{b}=[1,2]$, the scalar projection of b onto \mathbf{a} is

$$
\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}=\frac{-2+6}{\sqrt{4+9}}=\frac{4}{\sqrt{13}} .
$$

4. (a) Since \mathbf{u} and \mathbf{v} are unit vectors, we have

$$
\begin{aligned}
\mathbf{v} \cdot(2 \mathbf{u}-3 \mathbf{v}) & =2(\mathbf{v} \cdot \mathbf{u})-3(\mathbf{v} \cdot \mathbf{v}) \\
& =2\|\mathbf{v}\|\|\mathbf{u}\| \cos 60^{\circ}-3\|\mathbf{v}\|\|\mathbf{v}\| \cos 0^{\circ} \\
& =2(1)(1)\left(\frac{1}{2}\right)-3(1)(1)(1) \\
& =1-3=-2
\end{aligned}
$$

5. (a) For $0 \leq t \leq \frac{\pi}{2}$, we have $x=\sin t$ and $y=\cos ^{2} t$. Thus

$$
\begin{aligned}
\sin ^{2} t+\cos ^{2} t & =1 \\
x^{2}+y & =1 \\
y & =1-x^{2} .
\end{aligned}
$$

This is part of a parabola.
6. (d) With f defined on an open interval containing 2 and $f(2)=3$, it is always true that if $\lim _{x \rightarrow 2} f(x)=3=f(2)$, then f is continuous at $x=2$.
7. (c) Let $f(c)=c^{3}+c-1-\pi^{2}$. Then $f(2)=9-\pi^{2}<0$ and $f(3)=29-\pi^{2}>0$. Now f is a polynomial and thus continuous everywhere. Therefore, by the Intermediate Value Theorem $f(c)=0$ for some $c \in(2,3)$. So for some number $c \in(2,3)$, we have $c^{3}+c-1=\pi^{2}$.
8. (c) Let's divide numerator and denominator of the limiting expression by $x^{2}=\sqrt{x^{4}}$. Then

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{2 x^{4}+3 x^{2}+1}}{3 x^{2}+2 x+4}=\lim _{x \rightarrow \infty} \frac{\sqrt{2+\frac{3}{x^{2}}+\frac{1}{x^{4}}}}{3+\frac{2}{x}+\frac{4}{x^{2}}}=\frac{\sqrt{2}}{3}
$$

9. (b) Note that $y=\frac{x-2}{x^{2}-4}=\frac{(x-2)}{(x-2)(x+2)}$. Therefore, candidates for vertical asymptotes are $x=2$ and $x=-2$. Now comes the election!

- As $x \rightarrow 2$, we have

$$
y=\frac{(x-2)}{(x-2)(x+2)}=\frac{1}{x+2} \rightarrow \frac{1}{4} \neq \pm \infty .
$$

Thus $x=2$ is not a vertical asymptote.

- As $x \rightarrow-2^{+}$, we see that

$$
y=\frac{(x-2)}{(x-2)(x+2)}=\frac{1}{x+2} \rightarrow \frac{1}{0^{+}}=+\infty
$$

Hence $x=-2$ is a vertical asymptote.

- Here is a plot which corroborates these assertions.

10. (c) Resolve the absolute value.

$$
\begin{aligned}
f(x)=|2 x-3| & = \begin{cases}2 x-3, & 2 x-3 \geq 0 ; \\
-(2 x-3), & 2 x-3<0\end{cases} \\
& = \begin{cases}2 x-3, & x \geq 3 / 2 ; \\
3-2 x, & x<3 / 2\end{cases}
\end{aligned}
$$

Now draw a rough sketch to see that $f^{\prime}(x)$ does not exist for $x=\frac{3}{2}$ since the graph is sharp or kinked thereat.

11. (b) Use the quotient rule to differentiate $f(x)=\frac{2 x-1}{x^{2}+1}$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}+1\right)(2)-(2 x-1)(2 x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2 x^{2}+2-4 x^{2}+2 x}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2\left(1+x-x^{2}\right)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

12. (b) Velocity is the derivative of position.

$$
v(t)=s^{\prime}(t)=2 t+1
$$

When $t=2 \mathrm{~s}$, the velocity is $v(2)=5 \mathrm{~m} / \mathrm{s}$.
13. (a) With $f(0)=0$ and $\lim _{x \rightarrow 0} \frac{f(x)}{x}=-1$, we have

$$
\begin{gathered}
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}=-1 \text {; that is, } \\
f^{\prime}(0)=-1 . \text { Since } g(x)=(2 x-1) f(x), \text { we have } \\
g^{\prime}(x)=(2) f(x)+(2 x-1) f^{\prime}(x) \\
g^{\prime}(0)=(2) f(0)+(2(0)-1) f^{\prime}(0) \\
=(2)(0)+(-1)(-1)=1
\end{gathered}
$$

14. Let the positive x-axis point east and the positive y-axis point north. Then the velocity of the woman relative to the water is $\mathbf{v}=-3 \mathbf{i}+22 \mathbf{j}$, with components in mi / h. The woman's speed is the magnitude of the velocity.

$$
\|\mathbf{v}\|=\sqrt{(-3)^{2}+22^{2}}=\sqrt{493} \approx 22.20 \mathrm{mi} / \mathrm{h}
$$

Her direction θ points west of north into Quadrant 2 and satisfies $\tan \theta=\frac{3}{22}$, whence $\theta \approx 8^{\circ}$ or $\mathrm{N}^{\circ} \mathrm{W}$ (from the north, 8° toward the west).

15. The vector from $A(1,1)$ to $B(2,-1)$ is

$$
\mathbf{w}=\overrightarrow{A B}=\vec{B}-\vec{A}=[1,-2]
$$

A vector perpendicular to \mathbf{w} is $\mathbf{v}=\mathbf{w}^{\perp}=[2,1]$, a direction vector for our line. A vector equation of the line through $P(3,2)$ in this direction is

$$
\begin{aligned}
\mathbf{L}(t) & =\vec{P}+t \mathbf{v} \\
& =[3,2]+t[2,1] \\
& =[2 t+3, t+2]
\end{aligned}
$$

16. Let $f(x)=\left\{\begin{array}{ll}2 c^{2} x^{2}+c x+c, & x<1 ; \\ 1, & x=1 ; \\ c x+1, & x>1 .\end{array}\right.$ In order for $\lim _{x \rightarrow 1} f(x)$ to exist, we must ensure that the left-hand and right-hand limits are equal: $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)$.

- From the left we have $\lim _{x \rightarrow 1^{-}} f(x)=2 c^{2}+2 c$, whereas $\lim _{x \rightarrow 1^{+}} f(x)=c+1$ for the right-hand limit. Set these one-sided limits equal: $2 c^{2}+2 c=c+1$.
- Equivalently, $2 c^{2}+c-1=0$. Now,

$$
(2 c-1)(c+1)=0
$$

whence $c=-1, \frac{1}{2}$.
17. (i) The derivative of f at a is defined by

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

or, equivalently,

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

(ii) With $f(x)=\frac{1}{2 x+3}$, we have

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\frac{1}{2 x+3}-\frac{1}{5}}{x-1} \\
& =\lim _{x \rightarrow 1}\left(\frac{5-(2 x+3)}{5(2 x+3)} \frac{1}{x-1}\right) \\
& =\lim _{x \rightarrow 1} \frac{2-2 x}{5(2 x+3)(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{-2(x-1)}{5(2 x+3)(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{-2}{5(2 x+3)}=-\frac{2}{25} .
\end{aligned}
$$

(iii) A point on the tangent line to the curve $y=\frac{1}{2 x+3}$ at $x=1$ is $(1, f(1))=\left(1, \frac{1}{5}\right)$. The slope of the tangent line from part (a) is $f^{\prime}(1)=-\frac{2}{25}$. Hence an equation of the tangent line is $y-\frac{1}{5}=-\frac{2}{25}(x-1)$ or $y=-\frac{2}{25} x+\frac{7}{25}$.
18. (i) Here is a sketch of the graphs of f and g on the same figure. We label the slopes of the piecewise-linear components.

(ii) Clearly f is not differentiable at $x=1$ due to the sharp kink in its graph thereat.
(iii) Similarly, g is not differentiable at $x=\frac{3}{2}$ for the same reason.
(iv) At $x=\frac{1}{2}$, we have

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}=(0)\left(g\left(\frac{1}{2}\right)\right)+(1)\left(-\frac{4}{3}\right)=-\frac{4}{3} .
$$

(v) At $x=2$, we have

$$
\begin{aligned}
\left(\frac{f}{f+g}\right)^{\prime} & =\frac{(f+g) f^{\prime}-f\left(f^{\prime}+g^{\prime}\right)}{(f+g)^{2}} \\
& =\frac{\left(\frac{3}{2}+\frac{1}{3}\right)\left(\frac{1}{2}\right)-\left(\frac{3}{2}\right)\left(\frac{1}{2}+\frac{2}{3}\right)}{\left(\frac{3}{2}+\frac{1}{3}\right)^{2}} \\
& =-\frac{30}{121} \approx-0.2479 .
\end{aligned}
$$

