Fall 2004 Math 151

Exam 2A: Solutions
Mon, 01/Nov

(C)2004, Art Belmonte

1. (c) As $x \rightarrow \infty$, we see that $3^{-x}=\frac{1}{3^{x}} \rightarrow 0$ since the numerator is fixed and the denominator increases without bound.
2. (d) The natural logarithm is defined for all positive real arguments; i.e., for $|x|>0$ or $x \neq 0$.
3. (e) Isolate x step by step.

$$
\begin{aligned}
\log _{2}(2 x+3) & =3 \\
2 x+3 & =2^{3}=8 \\
2 x & =5 \\
x & =5 / 2
\end{aligned}
$$

4. (a) The range of f^{-1} is the domain of f. Since we are given $f(x)=\sqrt{1-x}$, we require $1-x \geq 0$ or $1 \geq x$. This is the interval $(-\infty, 1]$.
5. (a) Since $f(1)=2$ and $g=f^{-1}$, we have $g(2)=1$ and thus

$$
\begin{aligned}
g^{\prime}(2) & =\frac{1}{f^{\prime}(g(2))} \\
& =\frac{1}{f^{\prime}(1)} \\
& =\frac{1}{\left.\left(5 x^{4}+3 x^{2}\right)\right|_{x=1}}=\frac{1}{8}
\end{aligned}
$$

6. (b) Use the product rule to differentiate $f(x)=x^{2} \tan x$.

$$
f^{\prime}(x)=2 x \tan x+x^{2} \sec ^{2} x
$$

7. (b) Now $f(x)=2 \sqrt{e^{x}}=2\left(e^{x}\right)^{1 / 2}=2 e^{x / 2}$, whence

$$
f^{\prime}(x)=2 e^{x / 2}\left(\frac{1}{2}\right)=e^{x / 2}=\left(e^{x}\right)^{1 / 2}=\sqrt{e^{x}}
$$

8. (c) The derivative of position is velocity. In turn the derivative of velocity is acceleration.

$$
\begin{aligned}
\mathbf{r}(t) & =\left[(\cos t)^{2}, t\right] \\
\mathbf{v}(t)=\mathbf{r}^{\prime}(t) & =[2(\cos t)(-\sin t), 1]=[-\sin 2 t, 1] \\
\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t) & =[-2 \cos 2 t, 0] \\
& =\left[-2 \cos \frac{\pi}{3}, 0\right]=[-1,0]
\end{aligned}
$$

when $t=\frac{\pi}{6}$.
9. (a) Repeatedly differentiate until a pattern is evident.

$$
\begin{aligned}
f(x) & =\sin x \\
f^{\prime}(x) & =\cos x \\
f^{\prime \prime}(x) & =-\sin x \\
f^{\prime \prime \prime}(x) & =-\cos x \\
f^{(4)}(x) & =\sin x
\end{aligned}
$$

We see that the derivatives repeat in a cycle of four. Hence $f^{(28)}(x)=\sin x$. More precisely, $f^{(k)}=f^{(k \bmod 4)}$ where k mod 4 signifies remainder upon division by 4 . Because $28 \bmod 4=0$, we conclude that

$$
f^{(28)}(x)=f^{(0)}(x)=f(x)=\sin x
$$

10. (c) At $x=\sqrt{\pi}$, we have

$$
\begin{aligned}
f(x) & =\sin \left(x^{2}\right)=\sin \pi=0 \\
f^{\prime}(x) & =\cos \left(x^{2}\right) \cdot(2 x)=-2 \sqrt{\pi}
\end{aligned}
$$

Therefore, the desired linear approximation is

$$
\begin{aligned}
L(x) & =f(\sqrt{\pi})+f^{\prime}(\sqrt{\pi})(x-\sqrt{\pi}) \\
& =0-2 \sqrt{\pi}(x-\sqrt{\pi}) \\
& =2 \pi-2 \sqrt{\pi} x
\end{aligned}
$$

11. (e) The distance between $(x, 0)$ and $(0,1)$ is

$$
s=\sqrt{(x-0)^{2}+(0-1)^{2}}=\left(x^{2}+1\right)^{1 / 2}
$$

Differentiation with respect to time t yields

$$
\begin{aligned}
\frac{d s}{d t} & =\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}\left(2 x \frac{d x}{d t}\right) \\
& =\frac{2 x}{\sqrt{x^{2}+1}}
\end{aligned}
$$

since $d x / d t=2$ from the statement of the problem.
12. (d) Let $w=2^{-x}$ (to give it a name). Then

$$
2^{-x}+2^{-x}=w+w=2 w=\left(2^{1}\right)\left(2^{-x}\right)=2^{1-x}
$$

13. (c) Geometrically, Newton's method amounts to following tangent lines to where they intersect the x-axis. With the point $P(2,2)$ on the graph of f and the slope of the tangent line thereat between 3 and 5, we have the following diagram. It is clear from the picture that the next Newton iterate lies in the interval $1<x<2$ or $(1,2)$. No computation is required!

Alternatively, take an analytical approach. Since the graph of $y=f(x)$ passes through $(2,2)$, we have $f(2)=2$. Using a slope of $f^{\prime}(2)=3$, the next Newton iterate is

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=2-\frac{2}{3}=\frac{4}{3} \approx 1.33 \in(1,2)
$$

Similarly, using a slope of $f^{\prime}(2)=5$ gives

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=2-\frac{2}{5}=\frac{8}{5}=1.6 \in(1,2)
$$

14. Implicitly differentiate the equation

$$
\left(x^{2}+y^{2}\right)^{2}=4\left(x^{2}-y^{2}\right)+3 x+7
$$

with respect to x, then solve for $d y / d x$.

$$
\begin{aligned}
2\left(x^{2}+y^{2}\right)\left(2 x+2 y \frac{d y}{d x}\right) & =4\left(2 x-2 y \frac{d y}{d x}\right)+3 \\
\left(x^{2}+y^{2}\right)\left(x+y \frac{d y}{d x}\right) & =\left(2 x-2 y \frac{d y}{d x}\right)+\frac{3}{4} \\
\left(2 y+\left(x^{2}+y^{2}\right) y\right) \frac{d y}{d x} & =2 x+\frac{3}{4}-\left(x^{2}+y^{2}\right) x \\
\frac{d y}{d x} & =\frac{2 x+\frac{3}{4}-\left(x^{2}+y^{2}\right) x}{2 y+\left(x^{2}+y^{2}\right) y}
\end{aligned}
$$

Finally, plug in $(x, y)=(2,1)$.

$$
\frac{d y}{d x}=\frac{4 \frac{3}{4}-10}{7}=\frac{\frac{19}{4}-\frac{40}{4}}{7}=\frac{-\frac{21}{4}}{7}=-\frac{3}{4}
$$

15. We are given $x=(t+1)^{2 / 3}$ and $y=t e^{-t}$. The point $(x, y)=(1,0)$ corresponds to $t=0$.
(i) The parametric derivatives are

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{2}{3}(t+1)^{-1 / 3} \\
\frac{d y}{d t} & =(1) e^{-t}+t e^{-t}(-1)=(1-t) e^{-t}
\end{aligned}
$$

(ii) Therefore,

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{(1-t) e^{-t}}{\frac{2}{3}(t+1)^{-1 / 3}}
$$

(iii) The slope m of the desired tangent line is obtained by plugging $t=0$ into the expression for $d y / d x$. This yields $m=\frac{3}{2}$. Hence an equation of the tangent line is $y-0=\frac{3}{2}(x-1)$ or $y=\frac{3}{2} x-\frac{3}{2}$.
16. Given $f(x)=e^{a x} \sin b x$, we have

$$
\begin{aligned}
f^{\prime}(x) & =\left(a e^{a x}\right) \sin b x+e^{a x}(b \cos b x)=e^{a x}(a \sin b x+b \cos b x) \\
f^{\prime \prime}(x) & =\left(a e^{a x}\right)(a \sin b x+b \cos b x)+e^{a x}\left(a b \cos b x-b^{2} \sin b x\right) \\
& =e^{a x}\left(\left(a^{2}-b^{2}\right) \sin b x+2 a b \cos b x\right)
\end{aligned}
$$

17. Let y be the height of the rocket and θ the camera's angle of elevation. Here is a diagram followed by the relevant computations involved in this related rates problem.

since for $y=3000$, we have $\cos \theta=\frac{4000}{\sqrt{3000^{2}+4000^{2}}}=\frac{4}{5}$. The camera angle is changing at $\frac{12}{125}=0.096 \mathrm{rad} / \mathrm{s}$ or $5.5^{\circ} / \mathrm{s}$.
18. The linear approximation to f at $a=1$ is $L(x)=2 x+3$. Thus $f(1)=L(1)=5$ and $f^{\prime}(1)=L^{\prime}(1)=2$. We are given $H=\sqrt{f}$ or $H(x)=(f(x))^{1 / 2}$. At $x=1, H(x)=\sqrt{5}$ and $H^{\prime}(x)=\frac{1}{2}(f(x))^{-1 / 2} f^{\prime}(x)=\frac{1}{2}\left(\frac{1}{\sqrt{5}}\right)(2)=\frac{1}{\sqrt{5}}$. Hence the linear approximation to H at $a=1$ is

$$
L_{H}(x)=H(1)+H^{\prime}(1)(x-1)=\sqrt{5}+\frac{1}{\sqrt{5}}(x-1)
$$

