MATH 151, FALL 2013 COMMON EXAM II - VERSION B

LAST NAME: _____ FIRST NAME: _____

INSTRUCTOR:

SECTION NUMBER:

|--|

DIRECTIONS:

- 1. The use of a calculator, laptop or computer is prohibited.
- 2. TURN OFF cell phones and put them away. If a cell phone is seen during the exam, your exam will be collected and you will receive a zero.
- 3. In Part 1 (Problems 1-15), mark the correct choice on your ScanTron using a No. 2 pencil. The ScanTron will not be returned, therefore for your own records, also record your choices on your exam! Each problem is worth 3 points.
- 4. In Part 2 (Problems 16-21), present your solutions in the space provided. Show all your work neatly and concisely and *clearly indicate your final answer*. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.
- 5. Be sure to write your name, section number and version letter of the exam on the ScanTron form.

THE AGGIE CODE OF HONOR

"An Aggie does not lie, cheat or steal, or tolerate those who do."

Signature:

DO NOT WRITE BELOW!

Question	Points Awarded	Points
1-15		45
16		10
17		6
18		12
19		12
20		8
21		7
		100

PART I: Multiple Choice. 3 points each

- 1. Find $\lim_{x \to \infty} \frac{2^x + 2^{-4x}}{7(2^x) 2^{-4x}}$. (a) 0 (b) $\frac{1}{7}$ (c) ∞ (d) $\frac{2}{7}$ (e) -12. Find h''(1) if $h(x) = e^{-x^2}$.
- - (a) $\frac{4}{e}$ (b) $-\frac{2}{e}$ (c) $\frac{2}{e}$ (d) $\frac{1}{e}$ (e) $-\frac{4}{e}$
- 3. Consider the parametric curve $x(t) = t^4 + 1$ and $y(t) = \cos\left(\frac{\pi}{2}t\right)$. Find the slope of the tangent line at the point (2, 0).
 - (a) $-\frac{1}{4}$ (b) $-\frac{\pi}{8}$ (c) $-\frac{8}{\pi}$ (d) 0 (e) $-\frac{\pi}{4}$
- 4. The function $f(x) = 4x + \sin x$ is a one-to-one function. If g is the inverse of f, what is $g'(4\pi)$?
 - (a) $-\frac{1}{5}$ (b) -1 (c) $\frac{1}{5}$ (d) $\frac{1}{3}$ (e) $\frac{1}{4}$

- 5. Find the quadratic approximation for $f(x) = e^{4x}$ at x = 0.
 - (a) $Q(x) = 1 + 4x + 16x^2$
 - (b) $Q(x) = 1 + x + \frac{1}{2}x^2$
 - (c) $Q(x) = 1 + x + x^2$
 - (d) $Q(x) = 1 + 4x + 2x^2$
 - (e) $Q(x) = 1 + 4x + 8x^2$

6. Use differentials to approximate $\sqrt[3]{8.2}$.

(a)	$\sqrt[3]{8.2} \approx \frac{61}{60}$
(b)	$\sqrt[3]{8.2}\approx\frac{121}{60}$
(c)	$\sqrt[3]{8.2}\approx\frac{119}{60}$
(d)	$\sqrt[3]{8.2} \approx \frac{22}{5}$
(e)	$\sqrt[3]{8.2} \approx \frac{11}{5}$

7. At what point on the curve $x = 2t^2 - 4t$, $y = t^2 - t$ is the tangent line horizontal?

- (a) $\left(-\frac{3}{2}, -\frac{1}{4}\right)$ (b) $\left(\frac{1}{2}, -\frac{1}{4}\right)$ (c) (0, 0)(d) (-1, 0)
- (e) (-2,0)

8. Find the slope of the tangent line to the curve $x^3 + y^3 = x^2 + 5y$ at the point (2,1).

- (a) m = 2
- (b) m = -1
- (c) $m = \frac{11}{5}$
- (d) m = 4
- (e) $m = \frac{1}{4}$

9. Find the equation of the tangent line to the curve $g(x) = \frac{x}{2x+1}$ at x = 4.

(a) $y - \frac{4}{9} = \frac{1}{2}(x - 4)$ (b) $y = \frac{1}{81}(x - 4)$ (c) $y - \frac{4}{9} = \frac{1}{81}(x - 4)$ (d) $y - \frac{4}{3} = \frac{1}{81}(x - 4)$ (e) $y - \frac{4}{9} = \frac{1}{9}(x - 4)$

10.
$$\lim_{x \to 2^{-}} \left(\frac{1}{4}\right)^{\frac{x}{x-2}}$$
(a) 0
(b) ∞
(c) $\frac{1}{4}$
(d) 1
(e) $-\infty$

11. If $g(x) = xf(x^3)$, f(2) = 4, f(8) = 3, f'(8) = -1, and f'(2) = -2, what is g'(2)? (a) -24 (b) -12 (c) -16 (d) -44 (e) -21

12. Find the unit tangent vector to the curve $\mathbf{r}(\mathbf{t}) = \langle \sin(3t), \cos(3t) \rangle$ at $t = \frac{\pi}{9}$.

(a)
$$\left\langle -\frac{1}{2}, \frac{\sqrt{3}}{2} \right\rangle$$

(b) $\left\langle \frac{1}{2}, -\frac{\sqrt{3}}{2} \right\rangle$
(c) $\left\langle \frac{\sqrt{3}}{2}, -\frac{1}{2} \right\rangle$
(d) $\left\langle -\frac{\sqrt{3}}{2}, \frac{1}{2} \right\rangle$
(e) $\left\langle -\frac{\sqrt{3}}{2}, -\frac{1}{2} \right\rangle$

13. Find
$$\lim_{t \to 0} \frac{\sin^2(6t)}{4t^2}$$
.
(a) $\frac{3}{2}$
(b) ∞
(c) $\frac{1}{9}$
(d) 0
(e) 9

14. Find the value(s) of x where the tangent line to the graph of $f(x) = x\sqrt{x}$ is parallel to the line 2x - 4y = 18.

(a) $x = \frac{1}{9}$ (b) $x = \pm 9$ (c) $x = \frac{16}{3}$ (d) x = 9(e) $x = \pm \frac{1}{9}$

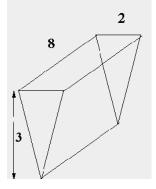
15. An object is moving according to the equation of motion $s(t) = \cos t + \frac{1}{4}t^2$. Find the time(s) when the acceleration is zero for $0 \le t \le 2\pi$.

(a)	$t = \frac{\pi}{3}, t = \frac{5\pi}{3}$
(b)	$t=\frac{\pi}{6},t=\frac{11\pi}{6}$
(c)	$t=\frac{5\pi}{6},t=\frac{7\pi}{6}$
(d)	$t = \frac{\pi}{4}, t = \frac{7\pi}{4}$
(e)	$t=\frac{2\pi}{3},\ t=\frac{4\pi}{3}$

PART II: Work Out

Directions: Present your solutions in the space provided. *Show all your work* neatly and concisely and *Box your final answer*. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.

16. (10 pts) A trough is 8 feet long. The ends of the trough are isosceles triangles with height 3 feet and width 2 feet across the top. If water is being poured into the trough at a rate of 1 cubic foot per minute, how fast is the water level rising when the depth of the water is 2 feet?



17. (6 pts) Find
$$\frac{dy}{dx}$$
 if $y = e^{2xy}$.

18. Find the derivative of the following functions. Do not simplify.

a.) (4 pts)
$$f(x) = ((x^3 + 3)^7 + x)^6$$

b.) (4 pts)
$$g(x) = \tan\left(\sqrt{3x^2 + 2x}\right)$$

c.) (4 pts)
$$h(x) = \sin^4 \left(a^3 + \frac{1}{x^3} \right)$$

19. Given that h(5) = 4, h'(5) = -3, g(5) = 7 and g'(5) = 3, find f'(5) for each of the following, if possible. If it is not possible, state what additional information is required.

a.) (3 pts)
$$f(x) = g(x)h(x)$$

b.) (3 pts)
$$f(x) = \frac{g(x)}{h(x)}$$

c.) (3 pts)
$$f(x) = [h(x)]^3$$

d.) (3 pts) f(x) = g(h(x))

- 20. Consider the vector equation $\mathbf{r}(\mathbf{t}) = \left\langle \sin\left(\frac{1}{t}\right), \sqrt{9-t^2} \right\rangle$.
 - a.) (2 pts) What is the domain of $\mathbf{r}(\mathbf{t})$? Use interval notation.

b.) (6 pts) Find $\mathbf{r}'(\mathbf{t})$ and the domain of $\mathbf{r}'(\mathbf{t})$. Use interval notation.

- 21. Consider $f(x) = \begin{cases} ax^2 + x + 3 & \text{if } x \leq -1 \\ bx 2 & \text{if } x > -1 \end{cases}$.
 - a.) (4 pts) Find the value of a and b that make f(x) differentiable everywhere.

b.) (3 pts) For the value of a and b found above, find f'(x).