Student (Print)	
	Last, First Middle
Student (Sign)	
Student ID	
Instructor	

MATH 152
 Exam 2
 Spring 2000
 Test Form A

Part I is multiple choice. There is no partial credit.
Part II is work out. Show all your work. Partial credit will be given.
You may not use a calculator.

$1-10$	$/ 50$
11	$/ 10$
12	$/ 10$
13	$/ 10$
14	$/ 10$
15	$/ 10$
TOTAL	

Part I: Multiple Choice (5 points each)

There is no partial credit. You may not use a calculator.

1. Compute $\int_{-1}^{1} \frac{1}{x^{6}} d x$.
a. 0
b. $\frac{2}{5}$
c. $-\frac{2}{7}$
d. $-\frac{2}{5}$
e. Divergent
2. Find the solution to $\frac{d y}{d x}=-\frac{x}{y}$ satisfying the initial condition $y(3)=4$. Then $y(0)=$
a. 0
b. 1
c. 3
d. 5
e. 6
3. A tank contains 500 liters of water with 10 kg of sugar dissolved. Sugar water that contains $\frac{1}{10} \mathrm{~kg}$ of sugar per liter of water flows into the tank at the rate of 7 liters per minute. Sugar water that contains $\frac{1}{20} \mathrm{~kg}$ of sugar per liter of water flows into the tank at the rate of 8 liters per minute. The solution is kept thoroughly mixed and drains from the tank at the rate of 15 liters per minute. Write down the initial value problem for $S(t)$, the amount of sugar in the tank at time t.
a. $\frac{d S}{d t}=10 t+\frac{3}{10}-\frac{S}{500} \quad$ with $S(0)=100$
b. $\frac{d S}{d t}=\frac{11}{10}-\frac{3 S}{100}$ with $S(0)=10$
c. $\frac{d S}{d t}=\frac{3}{20}-\frac{S}{500}$ with $S(0)=10$
d. $\frac{d S}{d t}=\frac{3}{20}-\frac{3 S}{100} \quad$ with $S(0)=\frac{1}{50}$
e. $\frac{d S}{d t}=\frac{11}{10} t-\frac{S}{500}$ with $S(0)=100$
4. Which integral gives the surface area of the "spool" obtained by revolving the curve

$$
y^{2}-x+1=0 \quad \text { for } \quad-1 \leq y \leq 1
$$ about the y-axis.

a. $\int_{-1}^{1} 2 \pi\left(1+y^{2}\right) \sqrt{1+4 y^{2}} d y$
b. $\int_{-1}^{1} 2 \pi y \sqrt{1+4 y^{2}} d y$
c. $\int_{-1}^{1} \pi y \sqrt{1+2 y} d y$
d. $\int_{-1}^{1} 2 \pi\left(1+4 y^{2}\right) \sqrt{1+y^{2}} d y$
e. $\int_{-1}^{1} 2 \pi\left(1+y^{2}\right) \sqrt{1+2 y^{2}} d y$
5. Find the x-coordinate of the centroid (center of mass, \bar{x}) of the region between $y=x^{3}$ and the x-axis for $0 \leq x \leq 2$.
a. $\frac{4}{5}$
b. 4
c. $\frac{8}{5}$
d. $\frac{32}{5}$
e. $\frac{2}{3}$
6. Find the limit of the sequence $a_{n}=\frac{\ln \left(n^{2}+1\right)}{\ln (n)}$.
a. 0
b. $\ln 2$
c. 2
d. e
e. ∞
7. Which of the following series are convergent?

$$
\begin{array}{ll}
\text { (i) } \sum_{n=1}^{\infty} \frac{100^{n}}{n!} & \text { (ii) } \sum_{n=1}^{\infty} \frac{2^{n}}{n+3^{n}}
\end{array}
$$

a. both (i) and (ii)
b. (i) only
c. (ii) only
d. neither
8. Which of the following series are convergent?
(i) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$
(ii) $\sum_{n=2}^{\infty} \frac{n}{\ln n}$
a. both (i) and (ii)
b. (i) only
c. (ii) only
d. neither
9. Compute $\sum_{n=0}^{\infty} \frac{5^{n+1}}{4^{n}}$.
a. -20
b. $\frac{20}{9}$
c. 20
d. 25
e. divergent
10. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
a. is absolutely convergent.
b. is convergent but not absolutely convergent.
c. is divergent to $+\infty$.
d. is divergent to $-\infty$.
e. is divergent but not to $\pm \infty$.

Part II: Work Out (10 points each)

Show all your work. Partial credit will be given.
You may not use a calculator.
11. Find the solution of $\frac{d y}{d x}-3 y=6 e^{-x}$ satisfying $y(0)=5$. Solve for y.
12. Consider the series $S=\sum_{n=1}^{\infty}\left(\frac{n}{n+1}-\frac{n+1}{n+2}\right)$
a. Write out the third partial sum $S_{3}=\sum_{n=1}^{3}\left(\frac{n}{n+1}-\frac{n+1}{n+2}\right)$ and add it up.
b. Compute the sum of the infinite series $S=\sum_{n=1}^{\infty}\left(\frac{n}{n+1}-\frac{n+1}{n+2}\right)$.
13. Find the arc length of the parametric curve $x=t^{3}, \quad y=3 t^{2}$ between $t=0$ and $t=\sqrt{12}$.
14. Consider the series $S=\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$.
a. Prove the series $S=\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ converges. Be sure to name the convergence test you use.
b. If you approximate the series S by the partial sum $S_{9}=\sum_{n=2}^{9} \frac{1}{n(\ln n)^{2}}$, find an upper bound for the error $\left|R_{9}\right|=\left|S-S_{9}\right|$ in the approximation and justify your estimate.
15. A triangular plate is suspended vertically in water as shown. The height of the triangle is 5 ft . Its base is 10 ft , and it is submerged 3 ft into the water. Find the force on one face of the plate.
$\left(\rho g=62.5 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}\right)$

