MATH 152

Exam 2

Spring 2000
Test Form A

- Solutions -

Part I is multiple choice. There is no partial credit.
Part II is work out. Show all your work. Partial credit will be given.
You may not use a calculator.

Part I: Multiple Choice (5 points each)

There is no partial credit. You may not use a calculator.

1. Compute $\int_{-1}^{1} \frac{1}{x^{6}} d x$.
a. 0
b. $\frac{2}{5}$
c. $-\frac{2}{7}$
d. $-\frac{2}{5}$
e. Divergent correctchoice
$\int_{-1}^{1} \frac{1}{x^{6}} d x=\int_{-1}^{0} \frac{1}{x^{6}} d x+\int_{0}^{1} \frac{1}{x^{6}} d x \quad$ and $\quad \int_{0}^{1} \frac{1}{x^{6}} d x=\lim _{a \rightarrow 0}\left[\frac{x^{-5}}{-5}\right]_{a}^{1}=\left[\frac{-1}{5}\right]-\lim _{a \rightarrow 0^{+}}\left[\frac{-1}{5 a^{5}}\right]=\infty$ Since $\int_{0}^{1} \frac{1}{x^{6}} d x$ is divergent, so is $\int_{-1}^{1} \frac{1}{x^{6}} d x$.
2. Find the solution to $\frac{d y}{d x}=-\frac{x}{y}$ satisfying the initial condition $y(3)=4$. Then $y(0)=$
a. 0
b. 1
c. 3
d. 5 correctchoice
e. 6

Separable differential equation. Separate the variables and integrate:
$y d y=-x d x \quad \Rightarrow \quad \int y d y=-\int x d x \quad \Rightarrow \quad \frac{y^{2}}{2}=-\frac{x^{2}}{2}+C$
Use the initial condition $\quad x=3 \quad y=4$:
$\frac{4^{2}}{2}=-\frac{3^{2}}{2}+C \quad \Rightarrow \quad C=\frac{16}{2}+\frac{9}{2}=\frac{25}{2}$
The solution is:
$\frac{y^{2}}{2}=-\frac{x^{2}}{2}+\frac{25}{2} \quad \Rightarrow \quad x^{2}+y^{2}=25 \quad \Rightarrow \quad y=\sqrt{25-x^{2}}$
So $y(0)=5$.
3. A tank contains 500 liters of water with 10 kg of sugar dissolved. Sugar water that contains $\frac{1}{10} \mathrm{~kg}$ of sugar per liter of water flows into the tank at the rate of 7 liters per minute. Sugar water that contains $\frac{1}{20} \mathrm{~kg}$ of sugar per liter of water flows into the tank at the rate of 8 liters per minute. The solution is kept thoroughly mixed and drains from the tank at the rate of 15 liters per minute. Write down the initial value problem for $S(t)$, the amount of sugar in the tank at time t.
a. $\frac{d S}{d t}=10 t+\frac{3}{10}-\frac{S}{500} \quad$ with $S(0)=100$
b. $\frac{d S}{d t}=\frac{11}{10}-\frac{3 S}{100}$ with $S(0)=10 \quad$ correctchoice
c. $\frac{d S}{d t}=\frac{3}{20}-\frac{S}{500}$ with $S(0)=10$
d. $\frac{d S}{d t}=\frac{3}{20}-\frac{3 S}{100}$ with $S(0)=\frac{1}{50}$
e. $\frac{d S}{d t}=\frac{11}{10} t-\frac{S}{500}$ with $S(0)=100$
$\frac{d S}{d t}=\underbrace{\frac{1}{10} \frac{\mathrm{~kg}}{\mathrm{~L}} \cdot \frac{7 \mathrm{~L}}{\min }+\frac{1}{20} \frac{\mathrm{~kg}}{\mathrm{~L}} \cdot \frac{8 \mathrm{~L}}{\mathrm{~min}}}_{\text {in }}-\underbrace{\frac{S \mathrm{~kg}}{500 \mathrm{~L}} \cdot \frac{15 \mathrm{~L}}{\min }}_{\text {out }}=\frac{11}{10}-\frac{3 S}{100}$
$S(0)=10 \mathrm{~kg}$
4. Which integral gives the surface area of the "spool" obtained by revolving the curve

$$
y^{2}-x+1=0 \quad \text { for } \quad-1 \leq y \leq 1
$$

about the y-axis.

a. $\int_{-1}^{1} 2 \pi\left(1+y^{2}\right) \sqrt{1+4 y^{2}} d y \quad$ correctchoice
b. $\int_{-1}^{1} 2 \pi y \sqrt{1+4 y^{2}} d y$
c. $\int_{-1}^{1} \pi y \sqrt{1+2 y} d y$
d. $\int_{-1}^{1} 2 \pi\left(1+4 y^{2}\right) \sqrt{1+y^{2}} d y$
e. $\int_{-1}^{1} 2 \pi\left(1+y^{2}\right) \sqrt{1+2 y^{2}} d y$
y-integral, $\quad r=x=y^{2}+1, \quad \frac{d x}{d y}=2 y$
$A=\int 2 \pi r d s=\int_{-1}^{1} 2 \pi\left(y^{2}+1\right) \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{-1}^{1} 2 \pi\left(y^{2}+1\right) \sqrt{1+4 y^{2}} d y$
5. Find the x-coordinate of the centroid (center of mass, \bar{x}) of the region between $y=x^{3}$ and the x-axis for $0 \leq x \leq 2$.
a. $\frac{4}{5}$
b. 4
c. $\frac{8}{5}$ correctchoice
d. $\frac{32}{5}$
e. $\frac{2}{3}$

The area is $A=\int_{0}^{2} x^{3} d x=\left[\frac{x^{4}}{4}\right]_{0}^{2}=4$.
The first moment is $1^{\text {st }}$-mom $=\int_{0}^{2} x^{4} d x=\left[\frac{x^{5}}{5}\right]_{0}^{2}=\frac{32}{5}$.
The x-coordinate of the centroid is $\bar{x}=\frac{1^{\text {st }} \text {-mom }}{A}=\frac{32}{5 \cdot 4}=\frac{8}{5}$
6. Find the limit of the sequence $a_{n}=\frac{\ln \left(n^{2}+1\right)}{\ln (n)}$.
a. 0
b. $\ln 2$
c. 2 correctchoice
d. e
e. ∞
$\lim _{n \rightarrow \infty} \frac{\ln \left(n^{2}+1\right)}{\ln (n)} \stackrel{\mathrm{PH}}{=} \lim _{n \rightarrow \infty} \frac{\frac{2 n}{n^{2}+1}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{2 n^{2}}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{2}{1+\frac{1}{n^{2}}}=2$
7. Which of the following series are convergent?
(i) $\sum_{n=1}^{\infty} \frac{100^{n}}{n!}$
(ii) $\sum_{n=1}^{\infty} \frac{2^{n}}{n+3^{n}}$
a. both (i) and (ii)
correctchoice
b. (i) only
c. (ii) only
d. neither
(i) converges by the Ratio Test: $\quad \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{100^{n+1}}{(n+1)!} \frac{n!}{100^{n}}=\lim _{n \rightarrow \infty} \frac{100}{(n+1)}=0<1$.
(ii) converges by the Ratio Test: $\quad \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{2^{n+1}}{n+1+3^{n+1}} \frac{n+3^{n}}{2^{n}}=\frac{2}{3}<1$ or by comparison to $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}$ which is a geometric series with $r=\frac{2}{3}<1$.
8. Which of the following series are convergent?
(i) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$
(ii) $\sum_{n=2}^{\infty} \frac{n}{\ln n}$
a. both (i) and (ii)
b. (i) only
c. (ii) only
d. neither correctchoice
(i) diverges by limit comparison with $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which is a p-series with $p=\frac{1}{2}<1$ since

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n}}{n+1}}{\frac{1}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

or by comparison to $\sum_{n=1}^{\infty} \frac{1}{n+1}$ which is a harmonic series since $\frac{\sqrt{n}}{n+1} \geq \frac{1}{n+1}$.
(ii) diverges by the $n^{\text {th }}$-Term Divergence Test: $\lim _{n \rightarrow \infty} \frac{n}{\ln n} \stackrel{\mathrm{PH}}{=} \lim _{n \rightarrow \infty} \frac{1}{\frac{1}{n}}=\lim _{n \rightarrow \infty} n=\infty \neq 0$.
9. Compute $\sum_{n=0}^{\infty} \frac{5^{n+1}}{4^{n}}$.
a. -20
b. $\frac{20}{9}$
c. 20
d. 25
e. divergent correctchoice

This is a geometric series whose ratio is $r=\frac{5}{4}>1$. So the series diverges.
10. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
a. is absolutely convergent.
b. is convergent but not absolutely convergent. correctchoice
c. is divergent to $+\infty$.
d. is divergent to $-\infty$.
e. is divergent but not to $\pm \infty$.
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges by the Alternating Series Test since $\frac{1}{\sqrt{n}}$ is decreasing and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$
The related absolute series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a divergent p-series since $p=\frac{1}{2}<1$.
So the original series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ is not absolutely convergent.

Part II: Work Out (10 points each)

Show all your work. Partial credit will be given.
You may not use a calculator.
11. Find the solution of $\frac{d y}{d x}-3 y=6 e^{-x}$ satisfying $y(0)=5$. Solve for y.

$$
\begin{aligned}
& I=e^{\int(-3) d x}=e^{-3 x} \\
& e^{-3 x} \frac{d y}{d x}-3 e^{-3 x} y=6 e^{-3 x} e^{-x} \quad \Rightarrow \quad \frac{d}{d x}\left(e^{-3 x} y\right)=6 e^{-4 x} \quad \Rightarrow \quad e^{-3 x} y=\int 6 e^{-4 x} d x=\frac{6 e^{-4 x}}{-4}+C \\
& e^{-3 x} y=-\frac{3}{2} e^{-4 x}+C \quad \Rightarrow \quad y=-\frac{3}{2} e^{-x}+C e^{3 x} \\
& x=0, \quad y=5 \quad \Rightarrow \quad e^{0} 5=-\frac{3}{2} e^{0}+C \quad \Rightarrow \quad C=\frac{13}{2} \\
& e^{-3 x} y=-\frac{3}{2} e^{-4 x}+\frac{13}{2} \quad \Rightarrow \quad y=-\frac{3}{2} e^{-x}+\frac{13}{2} e^{3 x}
\end{aligned}
$$

12. Consider the series $S=\sum_{n=1}^{\infty}\left(\frac{n}{n+1}-\frac{n+1}{n+2}\right)$
a. Write out the third partial sum $S_{3}=\sum_{n=1}^{3}\left(\frac{n}{n+1}-\frac{n+1}{n+2}\right)$ and add it up.

$$
S_{3}=\left(\frac{1}{2}-\frac{2}{3}\right)+\left(\frac{2}{3}-\frac{3}{4}\right)+\left(\frac{3}{4}-\frac{4}{5}\right)=\frac{1}{2}-\frac{4}{5}=\frac{5-8}{10}=-\frac{3}{10}
$$

b. Compute the sum of the infinite series $S=\sum_{n=1}^{\infty}\left(\frac{n}{n+1}-\frac{n+1}{n+2}\right)$.

$$
\begin{aligned}
& S_{k}=\sum_{n=1}^{k}\left(\frac{n}{n+1}-\frac{n+1}{n+2}\right)=\left(\frac{1}{2}-\frac{2}{3}\right)+\left(\frac{2}{3}-\frac{3}{4}\right)+\cdots+\left(\frac{k}{k+1}-\frac{k+1}{k+2}\right)=\frac{1}{2}-\frac{k+1}{k+2} \\
& S=\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}\left(\frac{1}{2}-\frac{k+1}{k+2}\right)=\frac{1}{2}-1=-\frac{1}{2}
\end{aligned}
$$

13. Find the arc length of the parametric curve $x=t^{3}, \quad y=3 t^{2}$ between
$t=0$ and $t=\sqrt{12}$.
t-integral $\quad \frac{d x}{d t}=3 t^{2} \quad \frac{d y}{d t}=6 t$
$L=\int_{0}^{\sqrt{12}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{0}^{\sqrt{12}} \sqrt{\left(3 t^{2}\right)^{2}+(6 t)^{2}} d t=\int_{0}^{\sqrt{12}} \sqrt{9 t^{4}+36 t^{2}} d t=\int_{0}^{\sqrt{12}} 3 t \sqrt{t^{2}+4} d t$
Let $u=t^{2}+4 \quad$ Then $\quad d u=2 t d t \quad$ or $\quad \frac{1}{2} d u=t d t$
$L=\frac{3}{2} \int \sqrt{u} d u=u^{3 / 2}=\left.\left(t^{2}+4\right)^{3 / 2}\right|_{0} ^{\sqrt{12}}=16^{3 / 2}-4^{3 / 2}=4^{3}-2^{3}=64-8=56$
14. Consider the series $S=\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$.
a. Prove the series $S=\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ converges. Be sure to name the convergence test you use.

We apply the Integral Test: Let $u=\ln n$. Then $d u=\frac{1}{n} d n \quad$ So $\int_{2}^{\infty} \frac{1}{n(\ln n)^{2}} d n=\int_{n=2}^{\infty} \frac{1}{u^{2}} d u=\frac{-1}{u}=\left[\frac{-1}{\ln n}\right]_{2}^{\infty}=0-\frac{-1}{\ln 2}=\frac{1}{\ln 2}$
Since the integral converges, the series converges.
b. If you approximate the series S by the partial sum $S_{9}=\sum_{n=2}^{9} \frac{1}{n(\ln n)^{2}}$, find an upper bound for the error $\left|R_{9}\right|=\left|S-S_{9}\right|$ in the approximation and justify your estimate.

The remainder is

$$
R_{9}=S-S_{9}=\sum_{n=10}^{\infty} \frac{1}{n(\ln n)^{2}}
$$

The function $\frac{1}{n(\ln n)^{2}}$ is decreasing.
The remainder is bounded by

$$
\begin{aligned}
R_{9} & <\int_{9}^{\infty} \frac{1}{n(\ln n)^{2}} d n=\left[\frac{-1}{\ln n}\right]_{9}^{\infty} \\
& =0-\frac{-1}{\ln 9}=\frac{1}{\ln 9}
\end{aligned}
$$

15. A triangular plate is suspended vertically in water as shown. The height of the triangle is 5 ft . Its base is 10 ft , and it is submerged 3 ft into the water. Find the force on one face of the plate.

$$
\left(\rho g=62.5 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}\right)
$$

Measure y down from the tip of the triangle. So the water is at $2 \leq y \leq 5$. Let w be the width of the triangle at position y. So by similar triangles

$$
\frac{w}{y}=\frac{10}{5}=2 \quad \Rightarrow \quad w=2 y
$$

Consequently, the area of a slice of height $d y$ is

$$
d A=w d y=2 y d y
$$

The height of the water above this slice is $h=y-2$. So the force on the plate is

$$
\begin{aligned}
F & =\int_{2}^{5} \rho g h d A=\rho g \int_{2}^{5}(y-2) 2 y d y=\rho g \int_{2}^{5}\left(2 y^{2}-4 y\right) d y=\rho g\left[2 \frac{y^{3}}{3}-2 y^{2}\right]_{2}^{5} \\
& =\rho g\left(\frac{250}{3}-50\right)-\rho g\left(\frac{16}{3}-8\right)=36 \rho g=2250
\end{aligned}
$$

