Student (Print)	
	Last, First Middle
Student (Sign)	
Student ID	
Instructor	

MATH 152
 Exam 3
 Spring 2000
 Test Form A

Part I is multiple choice. There is no partial credit.
Part II is work out. Show all your work. Partial credit will be given.

You may not use a calculator.

$1-10$	$/ 50$
11	$/ 10$
12	$/ 15$
13	$/ 15$
14	$/ 10$
TOTAL	

Part I: Multiple Choice (5 points each)

There is no partial credit. You may not use a calculator.

1. Find the values of x such that the vectors $\langle x,-1,3\rangle$ and $\langle 2,-5, x\rangle$ are orthogonal.
a. -1 only
b. 0 only
c. 1 only
d. 0 and 1 only
e. 1 and -1 only
2. Compute $\lim _{x \rightarrow 0} \frac{e^{x^{3}}-1-x^{3}}{x^{6}}$

HINT: The series for e^{x} may be helpful.
a. 0
b. $\frac{1}{3!}$
c. $-\frac{1}{3!}$
d. $\frac{1}{2}$
e. ∞
3. Consider the parametric curve $\vec{r}(t)=\left\langle t, \sin t, t^{3}\right\rangle$. Find parametric equations for the line tangent to the curve at $t=\pi$.
a. $x=1+\pi t, \quad y=-t, \quad z=3 \pi^{2}+\pi^{3} t$
b. $x=1+\pi t, \quad y=-1, \quad z=3 \pi^{2}+\pi^{3} t$
c. $x=\pi+t, \quad y=-1+t \cos t, \quad z=\pi^{3}+3 t^{3}$
d. $x=\pi+t, \quad y=t \cos t, \quad z=\pi^{3}+3 t^{3}$
e. $x=\pi+t, \quad y=-t, \quad z=\pi^{3}+3 \pi^{2} t$
4. Find the Taylor series for $f(x)=x^{2}+3$ about $x=2$.
a. $7+4(x-2)+(x-2)^{2}$
b. $7+4(x-2)+2(x-2)^{2}+4(x-2)^{3}$
c. $7+4(x-2)+(x-2)^{2}+\frac{2}{3}(x-2)^{4}+\cdots$
d. $7+4(x-2)+2(x-2)^{2}+4(x-2)^{3}+2(x-2)^{4}+\cdots$
e. $7+4(x-2)+2(x-2)^{2}+\frac{2}{3}(x-2)^{3}+\frac{4}{3}(x-2)^{4}$
5. The vectors \vec{a}, \vec{b} and $\vec{c}=\vec{b}-\vec{a}$ all lie in the same plane as shown in the diagram. Which of the following statements is TRUE?

a. $\vec{a} \times \vec{b}=\overrightarrow{0}$.
b. $\vec{a} \times \vec{b}$ points into the page.
c. $(\vec{a} \times \vec{b}) \cdot \vec{c}=0$.
d. $\vec{b} \times(\vec{a} \times \vec{c})$ points in the direction of $-\vec{a}$.
e. None of These
6. Find a power series centered at $x=0$ for the function $f(x)=\frac{x}{1-8 x^{3}}$, and determine its radius of convergence.
a. $\sum_{n=0}^{\infty}(-1)^{n} 8^{n} x^{3 n+1} \quad R=\frac{1}{8}$
b. $\sum_{n=0}^{\infty}(-1)^{n} 8^{n} x^{3 n+1} \quad R=8$
c. $\sum_{n=0}^{\infty} \frac{8^{n}}{n!} x^{3 n+1} \quad R=2$
d. $\sum_{n=0}^{\infty} 8^{n} x^{3 n+1} \quad R=\frac{1}{8}$
e. $\sum_{n=0}^{\infty} 8^{n} x^{3 n+1} \quad R=\frac{1}{2}$
7. Find the distance from the point $(3,-2,4)$ to the center of the sphere $(x-1)^{2}+(y+1)^{2}+(z-2)^{2}=4$
a. 2
b. 3
c. 9
d. $\sqrt{61}$
e. 61
8. Let $f(x)=\sin \left(x^{2}\right)$. Compute $f^{(14)}(0)$, the $14^{\text {th }}$ derivative of $f(x)$ evaluated at 0 . HINT: Use a series for $\sin \left(x^{2}\right)$.
a. $-\frac{1}{14!\cdot 7!}$
b. $\frac{7!}{14!}$
c. $\frac{14!}{7!}$
d. $-\frac{14!}{7!}$
e. $-14!\cdot 7$!
9. Find the angle between the vectors $\vec{u}=\langle 1,1,0\rangle$ and $\vec{v}=\langle 1,2,1\rangle$.
a. 0°
b. 30°
c. 45°
d. 60°
e. 90°
10. Evaluate the integral $\int_{0}^{1 / 2} \frac{1}{1+x^{3}} d x$ as an infinite series.
a. $\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{2}\right)^{3 n}=1-\frac{1}{2^{3}}+\frac{1}{2^{6}}-\frac{1}{2^{9}}+\cdots$
b. $\sum_{n=0}^{\infty} \frac{1}{3 n+1}\left(\frac{1}{2}\right)^{3 n+1}=\frac{1}{2}+\frac{1}{4 \cdot 2^{4}}+\frac{1}{7 \cdot 2^{7}}+\frac{1}{10 \cdot 2^{10}}+\cdots$
c. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3 n+1}\left(\frac{1}{2}\right)^{3 n+1}=\frac{1}{2}-\frac{1}{4 \cdot 2^{4}}+\frac{1}{7 \cdot 2^{7}}-\frac{1}{10 \cdot 2^{10}}+\cdots$
d. $\sum_{n=0}^{\infty}(-1)^{n}(3 n-1)\left(\frac{1}{2}\right)^{3 n-1}=-2-\frac{2}{2^{2}}+\frac{5}{2^{5}}-\frac{8}{2^{8}}+\cdots$
e. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3 n-1}\left(\frac{1}{2}\right)^{3 n-1}=-2-\frac{1}{2 \cdot 2^{2}}+\frac{1}{5 \cdot 2^{5}}-\frac{1}{8 \cdot 2^{8}}+\cdots$

Part II: Work Out (points indicated below)
Show all your work. Partial credit will be given.
You may not use a calculator.
11. (10 points) Consider the planes

$$
\begin{array}{lr}
P_{1}: & 2 x-y+z=1 \\
P_{2}: & x+y-3 z=2
\end{array}
$$

a. (2 pts) Fill in the blanks:

A normal to the plane P_{1} is $\overrightarrow{N_{1}}=$ \qquad
A normal to the plane P_{2} is $\overrightarrow{N_{2}}=$ \qquad
b. (3 pts) Find a vector parallel to the line of intersection of the two planes.
c. (3 pts) Find a point on the line of intersection of the two planes.
d. (2 pts) Find parametric equations for the line of intersection of the two planes.
12. (15 points) Let $f(x)=\ln x$.
a. (10 pts) Find the $3^{\text {rd }}$ degree Taylor polynomial T_{3} for $f(x)$ about $x=2$.
b. (5 pts) If this polynomial T_{3} is used to approximate $f(x)$ on the interval $1 \leq x \leq 3$, estimate the maximum error $\left|R_{3}\right|$ in this approximation using Taylor's Inequality.

$$
\left|R_{n}(x)\right|<\frac{M}{(n+1)!}|x-2|^{n+1} \quad \text { where } M \geq\left|f^{(n+1)}(x)\right| \text { for } 1 \leq x \leq 3 \text {. }
$$

13. (15 points) Consider the points

$$
P=(1,0,-1), \quad Q=(2,3,1) \quad \text { and } \quad R=(0,4,1)
$$

a. (5 pts) Find a vector orthogonal to the plane determined by P, Q and R.
b. (5 pts) Find the area of the triangle with vertices P, Q and R.
c. (5 pts) Find the equation of the plane determined by P, Q and R.
14. (10 points) Find the radius of convergence and the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{1}{3^{n} \sqrt{n+1}}(x-2)^{n}$.

