Student (Print)		Section	
	Last, First Middle		
Student (Sign)			
Student ID			
Instructor			

MATH 152 Exam 3 Spring 2000 Test Form A

Part I is multiple choice. There is no partial credit.

Part II is work out. Show all your work. Partial credit will be given.

You may not use a calculator.

1-10	/50
11	/10
12	/15
13	/15
14	/10
TOTAL	

Part I: Multiple Choice (5 points each)

There is no partial credit. You may not use a calculator.

- **1**. Find the values of *x* such that the vectors $\langle x, -1, 3 \rangle$ and $\langle 2, -5, x \rangle$ are orthogonal.
 - a. -1 only
 - **b**. 0 only
 - **c**. 1 only
 - **d**. 0 and 1 only
 - e. 1 and -1 only
- 2. Compute $\lim_{x\to 0} \frac{e^{x^3} 1 x^3}{x^6}$ HINT: The series for e^x may be helpful. a. 0 b. $\frac{1}{3!}$ c. $-\frac{1}{3!}$ d. $\frac{1}{2}$

3. Consider the parametric curve $\vec{r}(t) = \langle t, \sin t, t^3 \rangle$. Find parametric equations for the line tangent to the curve at $t = \pi$.

a. $x = 1 + \pi t$, y = -t, $z = 3\pi^2 + \pi^3 t$ **b.** $x = 1 + \pi t$, y = -1, $z = 3\pi^2 + \pi^3 t$ **c.** $x = \pi + t$, $y = -1 + t\cos t$, $z = \pi^3 + 3t^3$ **d.** $x = \pi + t$, $y = t\cos t$, $z = \pi^3 + 3t^3$ **e.** $x = \pi + t$, y = -t, $z = \pi^3 + 3\pi^2 t$

4. Find the Taylor series for $f(x) = x^2 + 3$ about x = 2.

a.
$$7 + 4(x - 2) + (x - 2)^2$$

b. $7 + 4(x - 2) + 2(x - 2)^2 + 4(x - 2)^3$
c. $7 + 4(x - 2) + (x - 2)^2 + \frac{2}{3}(x - 2)^4 + \cdots$
d. $7 + 4(x - 2) + 2(x - 2)^2 + 4(x - 2)^3 + 2(x - 2)^4 + \cdots$
e. $7 + 4(x - 2) + 2(x - 2)^2 + \frac{2}{3}(x - 2)^3 + \frac{4}{3}(x - 2)^4$

The vectors \vec{a} , \vec{b} and $\vec{c} = \vec{b} - \vec{a}$ all lie in 5. the same plane as shown in the diagram. Which of the following statements is TRUE?

- **a**. $\vec{a} \times \vec{b} = \vec{0}$.
- **b**. $\vec{a} \times \vec{b}$ points into the page. **c**. $(\vec{a} \times \vec{b}) \cdot \vec{c} = 0.$
- **d**. $\vec{b} \times (\vec{a} \times \vec{c})$ points in the direction of $-\vec{a}$.
- e. None of These
- 6. Find a power series centered at x = 0 for the function $f(x) = \frac{x}{1 8x^3}$, and determine its radius of convergence.
 - **a.** $\sum_{n=0}^{\infty} (-1)^n 8^n x^{3n+1}$ $R = \frac{1}{8}$ **b.** $\sum_{n=0}^{\infty} (-1)^n 8^n x^{3n+1}$ R = 8**c.** $\sum_{n=0}^{\infty} \frac{8^n}{n!} x^{3n+1}$ R = 2**d.** $\sum_{n=0}^{\infty} 8^n x^{3n+1}$ $R = \frac{1}{8}$ **e.** $\sum_{n=0}^{\infty} 8^n x^{3n+1}$ $R = \frac{1}{2}$
- 7. Find the distance from the point (3, -2, 4) to the center of the sphere $(x-1)^2 + (y+1)^2 + (z-2)^2 = 4$
 - **a**. 2
 - **b**. 3
 - **c**. 9
 - **d**. $\sqrt{61}$
 - **e**. 61

8. Let $f(x) = \sin(x^2)$. Compute $f^{(14)}(0)$, the 14th derivative of f(x) evaluated at 0. HINT: Use a series for $\sin(x^2)$.

a. $-\frac{1}{14! \bullet 7!}$ **b.** $\frac{7!}{14!}$ **c.** $\frac{14!}{7!}$ **d.** $-\frac{14!}{7!}$

- **e**. −14! 7!
- **9**. Find the angle between the vectors $\vec{u} = \langle 1, 1, 0 \rangle$ and $\vec{v} = \langle 1, 2, 1 \rangle$.
 - **a**. 0°
 - **b**. 30°
 - **c**. 45°
 - **d**. 60°
 - **e**. 90°

10. Evaluate the integral $\int_{0}^{1/2} \frac{1}{1+x^3} dx$ as an infinite series.

a.
$$\sum_{n=0}^{\infty} (-1)^{n} \left(\frac{1}{2}\right)^{3n} = 1 - \frac{1}{2^{3}} + \frac{1}{2^{6}} - \frac{1}{2^{9}} + \cdots$$

b.
$$\sum_{n=0}^{\infty} \frac{1}{3n+1} \left(\frac{1}{2}\right)^{3n+1} = \frac{1}{2} + \frac{1}{4 \cdot 2^{4}} + \frac{1}{7 \cdot 2^{7}} + \frac{1}{10 \cdot 2^{10}} + \cdots$$

c.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3n+1} \left(\frac{1}{2}\right)^{3n+1} = \frac{1}{2} - \frac{1}{4 \cdot 2^{4}} + \frac{1}{7 \cdot 2^{7}} - \frac{1}{10 \cdot 2^{10}} + \cdots$$

d.
$$\sum_{n=0}^{\infty} (-1)^{n} (3n-1) \left(\frac{1}{2}\right)^{3n-1} = -2 - \frac{2}{2^{2}} + \frac{5}{2^{5}} - \frac{8}{2^{8}} + \cdots$$

e.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3n-1} \left(\frac{1}{2}\right)^{3n-1} = -2 - \frac{1}{2 \cdot 2^{2}} + \frac{1}{5 \cdot 2^{5}} - \frac{1}{8 \cdot 2^{8}} + \cdots$$

Part II: Work Out (points indicated below)

Show all your work. Partial credit will be given.

You may not use a calculator.

11. (10 points) Consider the planes

$$P_1: 2x - y + z = 1$$

 $P_2: x + y - 3z = 2$

a. (2 pts) Fill in the blanks: A normal to the plane P_1 is $\overrightarrow{N_1} =$

A normal to the plane P_2 is $\overrightarrow{N_2} =$

b. (3 pts) Find a vector parallel to the line of intersection of the two planes.

c. (3 pts) Find a point on the line of intersection of the two planes.

d. (2 pts) Find parametric equations for the line of intersection of the two planes.

- **12**. (15 points) Let $f(x) = \ln x$.
 - **a**. (10 pts) Find the 3rd degree Taylor polynomial T_3 for f(x) about x = 2.

b. (5 pts) If this polynomial T_3 is used to approximate f(x) on the interval $1 \le x \le 3$, estimate the maximum error $|R_3|$ in this approximation using Taylor's Inequality.

$$|R_n(x)| < \frac{M}{(n+1)!} |x-2|^{n+1}$$
 where $M \ge \left| f^{(n+1)}(x) \right|$ for $1 \le x \le 3$.

13. (15 points) Consider the points

 $P = (1,0,-1), \quad Q = (2,3,1) \text{ and } R = (0,4,1)$

a. (5 pts) Find a vector orthogonal to the plane determined by *P*, *Q* and *R*.

b. (5 pts) Find the area of the triangle with vertices P, Q and R.

c. (5 pts) Find the equation of the plane determined by *P*, *Q* and *R*.

14. (10 points) Find the radius of convergence and the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{1}{3^n \sqrt{n+1}} (x-2)^n.$