Nama (Print)		חו		
Last, F	First Middle	10	1-12	/48
Name (Sign)			13	/13
MATH 152	FINAL EXAM	Spring 2000	14	/13
Sections 513,514 P. Yasskin			15	/13
Ν	Iultiple Choice: (4 points eac	h)	16	/13
1. Compute $\int_{0}^{\pi/2} x \cos(3x) dx$				

- **a.** $-\frac{\pi}{3} \frac{1}{3}$ **b.** $-\frac{\pi}{6} - \frac{1}{3}$ **c.** $-\frac{\pi}{3} + \frac{1}{3}$ **d.** $-\frac{\pi}{6} - \frac{1}{9}$ **e.** $-\frac{\pi}{3} + \frac{1}{9}$
- **2.** Compute $\lim_{n \to \infty} \frac{2^n}{1+3^n}$

3. Compute $\int_{0}^{\pi/2} \sin^{3}\theta \, d\theta$ **a.** $-\frac{2}{3}$ **b.** $-\frac{1}{3}$ **c.** 0 **d.** $\frac{1}{3}$ **e.** $\frac{2}{3}$ 4. Which formula will give the arclength of the curve $y = \sin x$ between x = 0and $x = \pi$?

a.
$$L = \int_{0}^{\pi} 2\pi x \sqrt{1 + \cos^2 x} \, dx$$

b. $L = \int_{0}^{\pi} \sqrt{1 + \cos^2 x} \, dx$
c. $L = \int_{0}^{\pi} 2\pi \sin x \sqrt{1 + \cos^2 x} \, dx$
d. $L = \int_{0}^{\pi} 2\pi x \sqrt{1 + \sin^2 x} \, dx$
e. $L = \int_{0}^{\pi} \sqrt{1 + \sin^2 x} \, dx$

- 5. Which initial value problem describes the solution to the following problem:
 - A 100 gal tank is initially filled with sugar water whose concentration is
 - $0.05 \frac{\text{lb sugar}}{\text{gal water}}$. Sugar is added to the tank at the rate of $2 \frac{\text{lb}}{\text{hr}}$ and pure water is added at the rate of $3 \frac{\text{gal}}{\text{hr}}$. The mixture is kept well mixed and drained at the rate of $3 \frac{\text{gal}}{\text{hr}}$. Find the find the amount of sugar in the tank after *t* hours.

a.
$$\frac{dS}{dt} = 2 - 0.03S$$
, $S(0) = 5$
b. $\frac{dS}{dt} = 0.1 - 0.15S$, $S(0) = 5$
c. $\frac{dS}{dt} = 3S - 0.02$, $S(0) = 0.05$
d. $\frac{dS}{dt} = 0.02 - 3S$, $S(0) = 5$
e. $\frac{dS}{dt} = 0.02 - 0.03S$, $S(0) = 0.05$

- 6. Find the solution of the differential equation $\frac{dy}{dx} = 2x(1+y^2)$ satisfying the initial condition y(2) = 0.
 - a. $y = \tan(x^2) + 2$ b. $y = \tan^2(x - 2)$ c. $y = \tan(x^2 - 4)$ d. $y = \tan(x^2 + \arctan 2)$ e. $y = \tan^2(x) - \tan^2 2$

7. Compute $\int_{1}^{2} \frac{1}{(x-2)^{2/3}} dx$ **a**. –∞

- **b**. -3
- **c**. −1
- **d**. 3
- **e**. ∞

8. Compute $\lim_{x \to 0} \frac{\sin(2x) - 2x}{3x^3}$ **a.** $-\frac{1}{9}$ **b.** -4 **c.** $-\frac{4}{9}$ **d.** $-\frac{8}{9}$ **e.** $-\frac{4}{3}$

9. Find the radius of convergence of the series

$$\sum_{n=1}^{\infty} \frac{2^n}{(n+1)^2} (x-3)^n.$$

- **a.** 0 **b.** $\frac{1}{2}$ **c.** 2 **d.** $\frac{1}{3}$ **e.** 3

10. Which term is incorrect in the following partial fraction expansion?

$$\frac{-10x^2 + 5x^3 - 8x + 1}{(x-1)(x-3)^2(x^2+2)} = \underbrace{\frac{A}{x-1}}_{a.} + \underbrace{\frac{B}{x-3}}_{b.} + \underbrace{\frac{D}{(x-3)^2}}_{c.} + \underbrace{\frac{Ex+F}{x^2+2}}_{c.}$$

- **e**. They are all correct.
- **11.** A vector \vec{u} has length 3. A vector \vec{v} has length 4. The angle between them is 60°. Find $\vec{u} \cdot \vec{v}$.
 - **a.** 6 **b.** $\frac{1}{24}$ **c.** $\frac{\sqrt{3}}{24}$ **d.** 24 **e.** $6\sqrt{3}$
- **12**. Find an equation for the plane containing the two lines

 $L_1:$ x = 3 + 3t y = 1 + 4t z = 2 + 5t $L_2:$ x = 3 + t y = 1 z = 2 - t

a. -4x - 8y - 4z = 10 **b.** -4x + 8y - 4z = 10 **c.** x - 2y + z = 3 **d.** x + 2y + z = 7**e.** x + 2y + z = 10

Work Out (13 points each)

Show all your work. Partial credit will be given. You may not use a calculator.

13. Compute
$$\int \frac{\sqrt{x^2 - 1}}{x} dx$$

14. The parametric curve given by $x = t^2$, $y = \frac{2}{3}t^3$, $z = \frac{1}{4}t^4$ for $0 \le t \le 2$ is rotated about the *y*-axis. Find the area of the surface of revolution. HINT: Factor the quantity in the square root. **15**. The region in the first quadrant between the curves $y = x^2$ and y = 6 - x is rotated about the *y*-axis. Find the volume of the solid of revolution.

16. A water tank has the shape of a circular cylinder laying on its side. It is 3 ft in radius and 5 ft long. It is half full of water. How much work is needed to pump the water out a spout at the top? (The weight density of water is $\rho g = 64.5 \frac{\text{lb}}{\text{ft}^3}$ but you may leave your answer as a multiple of ρg .)

