Name (Print)	-			
Last,	First Middle		1-12	148
Name (Sign)			13	/13
MATH 152	FINAL EXAM	Spring 2000	14	/13
Sections 513,514		P. Yasskin	15	/13
	Multiple Choice: (4 points each)		16	/13

1. Compute $\int_{0}^{\pi / 2} x \cos (3 x) d x$
a. $-\frac{\pi}{3}-\frac{1}{3}$
b. $-\frac{\pi}{6}-\frac{1}{3}$
c. $-\frac{\pi}{3}+\frac{1}{3}$
d. $-\frac{\pi}{6}-\frac{1}{9}$
e. $-\frac{\pi}{3}+\frac{1}{9}$
2. Compute $\lim _{n \rightarrow \infty} \frac{2^{n}}{1+3^{n}}$
a. 0
b. $\frac{1}{2}$
c. $\frac{1}{1-\frac{2}{3}}$
d. $\frac{\frac{1}{2}}{1-\frac{2}{3}}$
e. ∞
3. Compute $\int_{0}^{\pi / 2} \sin ^{3} \theta d \theta$
a. $-\frac{2}{3}$
b. $-\frac{1}{3}$
c. 0
d. $\frac{1}{3}$
e. $\frac{2}{3}$
4. Which formula will give the arclength of the curve $y=\sin x$ between $x=0$ and $x=\pi$?
a. $L=\int_{0}^{\pi} 2 \pi x \sqrt{1+\cos ^{2} x} d x$
b. $L=\int_{0}^{\pi} \sqrt{1+\cos ^{2} x} d x$
c. $L=\int_{0}^{\pi} 2 \pi \sin x \sqrt{1+\cos ^{2} x} d x$
d. $L=\int_{0}^{\pi} 2 \pi x \sqrt{1+\sin ^{2} x} d x$
e. $L=\int_{0}^{\pi} \sqrt{1+\sin ^{2} x} d x$
5. Which initial value problem describes the solution to the following problem:

A 100 gal tank is initially filled with sugar water whose concentration is $0.05 \frac{\mathrm{lb} \text { sugar }}{\text { gal water }}$. Sugar is added to the tank at the rate of $2 \frac{\mathrm{lb}}{\mathrm{hr}}$ and pure water is added at the rate of $3 \frac{\mathrm{gal}}{\mathrm{hr}}$. The mixture is kept well mixed and drained at the rate of $3 \frac{\mathrm{gal}}{\mathrm{hr}}$. Find the find the amount of sugar in the tank after t hours.
a. $\frac{d S}{d t}=2-0.03 S, \quad S(0)=5$
b. $\frac{d S}{d t}=0.1-0.15 S, \quad S(0)=5$
c. $\frac{d S}{d t}=3 S-0.02, \quad S(0)=0.05$
d. $\frac{d S}{d t}=0.02-3 S, \quad S(0)=5$
e. $\frac{d S}{d t}=0.02-0.03 S, \quad S(0)=0.05$
6. Find the solution of the differential equation $\frac{d y}{d x}=2 x\left(1+y^{2}\right)$ satisfying the initial condition $y(2)=0$.
a. $y=\tan \left(x^{2}\right)+2$
b. $y=\tan ^{2}(x-2)$
c. $y=\tan \left(x^{2}-4\right)$
d. $y=\tan \left(x^{2}+\arctan 2\right)$
e. $y=\tan ^{2}(x)-\tan ^{2} 2$
7. Compute $\int_{1}^{2} \frac{1}{(x-2)^{2 / 3}} d x$
a. $-\infty$
b. -3
c. -1
d. 3
e. ∞
8. Compute $\lim _{x \rightarrow 0} \frac{\sin (2 x)-2 x}{3 x^{3}}$
a. $-\frac{1}{9}$
b. -4
c. $-\frac{4}{9}$
d. $-\frac{8}{9}$
e. $-\frac{4}{3}$
9. Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}}{(n+1)^{2}}(x-3)^{n}$.
a. 0
b. $\frac{1}{2}$
c. 2
d. $\frac{1}{3}$
e. 3
10. Which term is incorrect in the following partial fraction expansion?

$$
\frac{-10 x^{2}+5 x^{3}-8 x+1}{(x-1)(x-3)^{2}\left(x^{2}+2\right)}=\underbrace{\frac{A}{x-1}}_{\text {a. }}+\underbrace{\frac{B}{x-3}}_{\text {b. }}+\underbrace{\frac{D}{(x-3)^{2}}}_{\text {c. }}+\underbrace{\frac{E x+F}{x^{2}+2}}_{\text {d. }}
$$

e. They are all correct.
11. A vector \vec{u} has length 3 . A vector \vec{v} has length 4 . The angle between them is 60°. Find $\vec{u} \bullet \vec{v}$.
a. 6
b. $\frac{1}{24}$
c. $\frac{\sqrt{3}}{24}$
d. 24
e. $6 \sqrt{3}$
12. Find an equation for the plane containing the two lines

$$
\begin{array}{llll}
L_{1}: & x=3+3 t & y=1+4 t & z=2+5 t \\
L_{2}: & x=3+t & y=1 & z=2-t
\end{array}
$$

a. $-4 x-8 y-4 z=10$
b. $-4 x+8 y-4 z=10$
c. $x-2 y+z=3$
d. $x+2 y+z=7$
e. $x+2 y+z=10$

Work Out (13 points each)
Show all your work. Partial credit will be given. You may not use a calculator.
13. Compute $\int \frac{\sqrt{x^{2}-1}}{x} d x$
14. The parametric curve given by $x=t^{2}, \quad y=\frac{2}{3} t^{3}, \quad z=\frac{1}{4} t^{4} \quad$ for $0 \leq t \leq 2$ is rotated about the y-axis. Find the area of the surface of revolution. HINT: Factor the quantity in the square root.
15. The region in the first quadrant between the curves $y=x^{2}$ and $y=6-x$ is rotated about the y-axis. Find the volume of the solid of revolution.

16. A water tank has the shape of a circular cylinder laying on its side. It is 3 ft in radius and 5 ft long. It is half full of water. How much work is needed to pump the water out a spout at the top? (The weight density of water is $\rho g=64.5 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$ but you may leave your answer as a multiple of ρg.)

