MATH 152
Sections 513,514

FINAL EXAM
Solutions

1. Compute $\int_{0}^{\pi / 2} x \cos (3 x) d x$
a. $-\frac{\pi}{3}-\frac{1}{3}$
b. $-\frac{\pi}{6}-\frac{1}{3}$
c. $-\frac{\pi}{3}+\frac{1}{3}$
d. $-\frac{\pi}{6}-\frac{1}{9} \quad$ correctchoice
e. $-\frac{\pi}{3}+\frac{1}{9}$

Integrate by parts with $\begin{array}{ll}u=x & d v=\cos (3 x) d x \\ d u=d x & v=\frac{1}{3} \sin (3 x)\end{array}$

$$
\begin{aligned}
\int_{0}^{\pi / 2} x \cos (3 x) d x & =\left[\frac{x}{3} \sin (3 x)-\frac{1}{3} \int \sin (3 x) d x\right]_{0}^{\pi / 2}=\left[\frac{x}{3} \sin (3 x)+\frac{1}{9} \cos (3 x)\right]_{0}^{\pi / 2} \\
& =\frac{\pi}{6} \sin \left(\frac{3 \pi}{2}\right)-\frac{1}{9} \cos (0)=-\frac{\pi}{6}-\frac{1}{9}
\end{aligned}
$$

2. Compute $\lim _{n \rightarrow \infty} \frac{2^{n}}{1+3^{n}}$
a. 0 correctchoice
b. $\frac{1}{2}$
c. $\frac{1}{1-\frac{2}{3}}$
d. $\frac{\frac{1}{2}}{1-\frac{2}{3}}$
e. ∞

$$
\lim _{n \rightarrow \infty} \frac{2^{n}}{1+3^{n}}=\lim _{n \rightarrow \infty} \frac{\frac{2^{n}}{3^{n}}}{\frac{1}{3^{n}}+1}=\frac{0}{1}=0
$$

3. Compute $\int_{0}^{\pi / 2} \sin ^{3} \theta d \theta$
a. $-\frac{2}{3}$
b. $-\frac{1}{3}$
c. 0
d. $\frac{1}{3}$
e. $\frac{2}{3}$ correctchoice

Let $u=\cos \theta$. Then $d u=-\sin \theta d \theta$. So:

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin ^{3} \theta d \theta & =\int_{0}^{\pi / 2}\left(1-\cos ^{2} \theta\right) \sin \theta d \theta=-\int_{1}^{0}\left(1-u^{2}\right) d u \\
& =-\left[u-\frac{u^{3}}{3}\right]_{1}^{0}=-0+\left[1-\frac{1}{3}\right]=\frac{2}{3}
\end{aligned}
$$

4. Which formula will give the arclength of the curve $y=\sin x$ between $x=0$ and $x=\pi$?
a. $L=\int_{0}^{\pi} 2 \pi x \sqrt{1+\cos ^{2} x} d x$
b. $L=\int_{0}^{\pi} \sqrt{1+\cos ^{2} x} d x$ correctchoice
c. $L=\int_{0}^{\pi} 2 \pi \sin x \sqrt{1+\cos ^{2} x} d x$
d. $L=\int_{0}^{\pi} 2 \pi x \sqrt{1+\sin ^{2} x} d x$
e. $L=\int_{0}^{\pi} \sqrt{1+\sin ^{2} x} d x$

$$
\frac{d y}{d x}=\cos x \quad L=\int_{0}^{\pi} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{\pi} \sqrt{1+\cos ^{2} x} d x
$$

5. Which initial value problem describes the solution to the following problem:

A 100 gal tank is initially filled with sugar water whose concentration is $0.05 \frac{\mathrm{lb} \text { sugar }}{\text { gal water }}$. Sugar is added to the tank at the rate of $2 \frac{\mathrm{lb}}{\mathrm{hr}}$ and pure water is added at the rate of $3 \frac{\mathrm{gal}}{\mathrm{hr}}$. The mixture is kept well mixed and drained at the rate of $3 \frac{\mathrm{gal}}{\mathrm{hr}}$. Find the find the amount of sugar in the tank after t hours.
a. $\frac{d S}{d t}=2-0.03 S, \quad S(0)=5 \quad$ correctchoice
b. $\frac{d S}{d t}=0.1-0.15 S, \quad S(0)=5$
c. $\frac{d S}{d t}=3 S-0.02, \quad S(0)=0.05$
d. $\frac{d S}{d t}=0.02-3 S, \quad S(0)=5$
e. $\frac{d S}{d t}=0.02-0.03 S, \quad S(0)=0.05$

$$
\frac{d S}{d t} \frac{\mathrm{lb}}{\mathrm{hr}}=2 \frac{\mathrm{lb}}{\mathrm{hr}}-\frac{S \mathrm{lb}}{100 \mathrm{gal}} 3 \frac{\mathrm{gal}}{\mathrm{hr}}=2-0.03 S \quad S(0)=0.05 \frac{\mathrm{lb}}{\mathrm{gal}} 100 \mathrm{gal}=5
$$

6. Find the solution of the differential equation $\frac{d y}{d x}=2 x\left(1+y^{2}\right)$ satisfying the initial condition $y(2)=0$.
a. $y=\tan \left(x^{2}\right)+2$
b. $y=\tan ^{2}(x-2)$
c. $y=\tan \left(x^{2}-4\right) \quad$ correctchoice
d. $y=\tan \left(x^{2}+\arctan 2\right)$
e. $y=\tan ^{2}(x)-\tan ^{2} 2$

$$
\int \frac{d y}{1+y^{2}}=\int 2 x d x \quad \arctan y=x^{2}+C \quad \arctan 0=4+C \quad y=\tan \left(x^{2}-4\right)
$$

7. Compute $\int_{1}^{2} \frac{1}{(x-2)^{2 / 3}} d x$
a. $-\infty$
b. -3
c. -1
d. 3 correctchoice
e. ∞

$$
\int_{1}^{2} \frac{1}{(x-2)^{2 / 3}} d x=\left[3(x-2)^{1 / 3}\right]_{1}^{2}=3(2-2)^{1 / 3}-3(1-2)^{1 / 3}=3
$$

8. Compute $\lim _{x \rightarrow 0} \frac{\sin (2 x)-2 x}{3 x^{3}}$
a. $-\frac{1}{9}$
b. -4
c. $-\frac{4}{9} \quad$ correctchoice
d. $-\frac{8}{9}$
e. $-\frac{4}{3}$

$$
\lim _{x \rightarrow 0} \frac{\sin (2 x)-2 x}{3 x^{3}}=\lim _{x \rightarrow 0} \frac{\left[2 x-\frac{(2 x)^{3}}{3!}+\cdots\right]-2 x}{3 x^{3}}=\lim _{x \rightarrow 0}\left[-\frac{(2 x)^{3}}{3!3 x^{3}}+\cdots\right]=-\frac{8}{6 \cdot 3}=-\frac{4}{9}
$$

9. Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}}{(n+1)^{2}}(x-3)^{n}$.
a. 0
b. $\frac{1}{2}$ correctchoice
c. 2
d. $\frac{1}{3}$
e. 3

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}(x-3)^{n+1}}{(n+2)^{2}} \frac{(n+1)^{2}}{2^{n}(x-3)^{n}}\right|=2|x-3|
$$

Convergent if

$$
L=2|x-3|<1 \text { or }|x-3|<\frac{1}{2} . \text { So } R=\frac{1}{2}
$$

10. Which term is incorrect in the following partial fraction expansion?

$$
\frac{-10 x^{2}+5 x^{3}-8 x+1}{(x-1)(x-3)^{2}\left(x^{2}+2\right)}=\underbrace{\frac{A}{x-1}}_{\text {a. }}+\underbrace{\frac{B}{x-3}}_{\text {b. }}+\underbrace{\frac{D}{(x-3)^{2}}}_{\text {c. }}+\underbrace{\frac{E x+F}{x^{2}+2}}_{\text {d. }}
$$

e. They are all correct. correctchoice

A linear or linear to a power in the denominator gets a constant in the numerator.
A quadratic or quadratic to a power in the denominator gets a linear in the numerator. So all terms are correct.
11. A vector \vec{u} has length 3 . A vector \vec{v} has length 4 . The angle between them is 60°. Find $\vec{u} \bullet \vec{v}$.
a. 6
correctchoice
b. $\frac{1}{24}$
c. $\frac{\sqrt{3}}{24}$
d. 24
e. $6 \sqrt{3}$

$$
\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos \theta=3 \cdot 4 \cdot \cos 60^{\circ}=\frac{12}{2}=6
$$

12. Find an equation for the plane containing the two lines

$$
\begin{array}{llll}
L_{1}: & x=3+3 t & y=1+4 t & z=2+5 t \\
L_{2}: & x=3+t & y=1 & z=2-t
\end{array}
$$

a. $-4 x-8 y-4 z=10$
b. $-4 x+8 y-4 z=10$
c. $x-2 y+z=3 \quad$ correctchoice
d. $x+2 y+z=7$
e. $x+2 y+z=10$

$$
\begin{gathered}
\vec{v}_{1}=(3,4,5) \quad \vec{v}_{2}=(1,0,-1) \quad \vec{N}=\vec{v}_{1} \times \vec{v}_{2}=(-4,8,-4) \quad P=(3,1,2) \\
\vec{N} \cdot(X-P)=0 \quad-4(x-3)+8(y-1)-4(z-2)=0 \\
-4 x+8 y-4 z=-12 \quad x-2 y+z=3
\end{gathered}
$$

Work Out (13 points each)

Show all your work. Partial credit will be given. You may not use a calculator.
13. Compute $\int \frac{\sqrt{x^{2}-1}}{x} d x$

$$
\left.x=\sec \theta \quad d x=\sec \theta \tan \theta d \theta \quad \sqrt{x^{2}-1}=\sqrt{\sec ^{2} \theta-1}=\tan \theta\right] \begin{aligned}
\int \frac{\sqrt{x^{2}-1}}{x} d x & =\int \frac{\tan \theta}{\sec \theta} \sec \theta \tan \theta d \theta \\
& =\int \tan ^{2} \theta d \theta \\
& =\int 1-\sec ^{2} \theta d \theta \\
& =\theta-\tan \theta \\
& =\operatorname{arcsec} x-\sqrt{x^{2}-1}+C
\end{aligned}
$$

14. The parametric curve given by $\quad x=t^{2}, \quad y=\frac{2}{3} t^{3}, \quad z=\frac{1}{4} t^{4} \quad$ for $0 \leq t \leq 2$ is rotated about the y-axis. Find the area of the surface of revolution. HINT: Factor the quantity in the square root.

$$
\begin{aligned}
& \frac{d x}{d t}=2 t, \quad \frac{d y}{d t}=2 t^{2}, \quad \frac{d z}{d t}=t^{3} \\
& A=\int_{0}^{2} 2 \pi x \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \\
&=\int_{0}^{2} 2 \pi t^{2} \sqrt{(2 t)^{2}+\left(2 t^{2}\right)^{2}+\left(t^{3}\right)^{2}} d t \\
&=\int_{0}^{2} 2 \pi t^{2} \sqrt{4 t^{2}+4 t^{4}+t^{6}} d t \\
&=\int_{0}^{2} 2 \pi t^{2} \sqrt{t^{2}\left(2+t^{2}\right)^{2}} d t=\int_{0}^{2} 2 \pi t^{3}\left(2+t^{2}\right) d t=2 \pi \int_{0}^{2}\left(2 t^{3}+t^{5}\right) d t \\
&=2 \pi\left[\frac{t^{4}}{2}+\frac{t^{6}}{6}\right]_{0}^{2} \\
&=2 \pi\left[\frac{16}{2}+\frac{64}{6}\right]=16 \pi\left(1+\frac{4}{3}\right)=\frac{112}{3} \pi
\end{aligned}
$$

15. The region in the first quadrant between the curves $y=x^{2}$ and $y=6-x$ is rotated about the y-axis. Find the volume of the solid of revolution.

Use an x-integral with cylinders. $\quad h=6-x-x^{2} \quad r=x$

To find the right endpoint, we solve $x^{2}=6-x$, or $x^{2}+x-6=0$ or $(x-2)(x+3)=0$. In the first quadrant $x=2$.

$$
\begin{aligned}
V & =\int_{0}^{2} 2 \pi r h d x=\int_{0}^{2} 2 \pi x\left(6-x-x^{2}\right) d x=2 \pi \int_{0}^{2}\left(6 x-x^{2}-x^{3}\right) d x \\
& =2 \pi\left[3 x^{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{2}=2 \pi\left[12-\frac{8}{3}-4\right]_{0}^{2}=\frac{32}{3} \pi
\end{aligned}
$$

16. A water tank has the shape of a circular cylinder laying on its side. It is 3 ft in radius and 5 ft long. It is half full of water. How much work is needed to pump the water out a spout at the top? (The weight density of water is $\rho g=64.5 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$ but you may leave your answer as a multiple of ρg.)

We put the origin at the center of a circular end with y
 measured downward. So the water at height y must be lifted a distance $D=y+3$.
To know the weight of a slab of water at height y, we must know its volume. Its length is 5 . Its width is $2 x$. Its thickness is $d y$. By the Pythagorean theorem $x=\sqrt{9-y^{2}}$. So the weight is

$$
d F=\rho g d V=\rho g 10 x d y=\rho g 10 \sqrt{9-y^{2}} d y
$$

So the work is

$$
\begin{aligned}
W & =\int D d F=\int_{0}^{3}(y+3) \rho g 10 \sqrt{9-y^{2}} d y \\
& =10 \rho g \int_{0}^{3} y \sqrt{9-y^{2}} d y+30 \rho g \int_{0}^{3} \sqrt{9-y^{2}} d y
\end{aligned}
$$

The first integral is a simple substitution. The second integral is the area of a quarter circle of radius 3 .

$$
\begin{aligned}
W & =10 \rho g\left[-\frac{1}{3}\left(9-y^{2}\right)^{3 / 2}\right]_{0}^{3}+30 \rho g \frac{1}{4} \pi(3)^{2} \\
& =10 \rho g \frac{1}{3}(9)^{3 / 2}+\frac{135}{2} \rho g \pi=\rho g\left(90+\frac{135}{2} \pi\right) \\
& =64.5\left(90+\frac{135}{2} \pi\right)
\end{aligned}
$$

