MATH 152

Sections 513,514 P. Yasskin Solutions Multiple Choice: (4 points each) 1. Compute $\int_0^{\pi/2} x \cos(3x) \, dx$ **a.** $-\frac{\pi}{3} - \frac{1}{3}$ **b.** $-\frac{\pi}{6} - \frac{1}{3}$ **c.** $-\frac{\pi}{3} + \frac{1}{3}$ **d.** $-\frac{\pi}{6} - \frac{1}{9}$ correctchoice **e.** $-\frac{\pi}{2} + \frac{1}{2}$ Integrate by parts with u = x $dv = \cos(3x) dx$ du = dx $v = \frac{1}{3}\sin(3x)$ $\int_{0}^{\pi/2} x\cos(3x) \, dx = \left[\frac{x}{3} \sin(3x) - \frac{1}{3} \int \sin(3x) \, dx \right]_{0}^{\pi/2} = \left[\frac{x}{3} \sin(3x) + \frac{1}{9} \cos(3x) \right]_{0}^{\pi/2}$ $=\frac{\pi}{6}\sin\left(\frac{3\pi}{2}\right) - \frac{1}{9}\cos(0) = -\frac{\pi}{6} - \frac{1}{9}$ 2. Compute $\lim_{n \to \infty} \frac{2^n}{1+3^n}$ **a**. 0 correctchoice **b.** $\frac{1}{2}$ **c.** $\frac{1}{1-\frac{2}{3}}$ **d.** $\frac{\frac{1}{2}}{1-\frac{2}{2}}$ **e**. ∞ $\lim_{n \to \infty} \frac{2^n}{1+3^n} = \lim_{n \to \infty} \frac{\frac{2^n}{3^n}}{\frac{1}{2^n}+1} = \frac{0}{1} = 0$ 3. Compute $\int_{0}^{\pi/2} \sin^3\theta d\theta$ **a**. $-\frac{2}{3}$ **b**. $-\frac{1}{3}$ **c**. 0 **d**. $\frac{1}{3}$ **e**. $\frac{2}{3}$ correctchoice Let $u = \cos \theta$. Then $du = -\sin \theta d\theta$. So: $\int_{0}^{\pi/2} \sin^{3}\theta \, d\theta = \int_{0}^{\pi/2} (1 - \cos^{2}\theta) \sin\theta \, d\theta = -\int_{1}^{0} (1 - u^{2}) \, du$ $= -\left[u - \frac{u^3}{3}\right]_{1}^{0} = -0 + \left[1 - \frac{1}{3}\right] = \frac{2}{3}$

4. Which formula will give the arclength of the curve $y = \sin x$ between x = 0and $x = \pi$?

a.
$$L = \int_{0}^{\pi} 2\pi x \sqrt{1 + \cos^{2}x} \, dx$$

b. $L = \int_{0}^{\pi} \sqrt{1 + \cos^{2}x} \, dx$ correctchoice
c. $L = \int_{0}^{\pi} 2\pi \sin x \sqrt{1 + \cos^{2}x} \, dx$
d. $L = \int_{0}^{\pi} 2\pi x \sqrt{1 + \sin^{2}x} \, dx$
e. $L = \int_{0}^{\pi} \sqrt{1 + \sin^{2}x} \, dx$
 $\frac{dy}{dx} = \cos x$ $L = \int_{0}^{\pi} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \, dx = \int_{0}^{\pi} \sqrt{1 + \cos^{2}x} \, dx$

5. Which initial value problem describes the solution to the following problem:

A 100 gal tank is initially filled with sugar water whose concentration is $0.05 \frac{\text{lb sugar}}{\text{gal water}}$. Sugar is added to the tank at the rate of $2 \frac{\text{lb}}{\text{hr}}$ and pure water is added at the rate of $3 \frac{\text{gal}}{\text{hr}}$. The mixture is kept well mixed and drained at the rate of $3 \frac{\text{gal}}{\text{hr}}$. Find the find the amount of sugar in the tank after *t* hours.

a.
$$\frac{dS}{dt} = 2 - 0.03S$$
, $S(0) = 5$ correctchoice
b. $\frac{dS}{dt} = 0.1 - 0.15S$, $S(0) = 5$
c. $\frac{dS}{dt} = 3S - 0.02$, $S(0) = 0.05$
d. $\frac{dS}{dt} = 0.02 - 3S$, $S(0) = 5$
e. $\frac{dS}{dt} = 0.02 - 0.03S$, $S(0) = 0.05$
 $\frac{dS}{dt} \frac{\text{lb}}{\text{hr}} = 2\frac{\text{lb}}{\text{hr}} - \frac{S \text{ lb}}{100 \text{ gal}} 3\frac{\text{gal}}{\text{hr}} = 2 - 0.03S$ $S(0) = 0.05\frac{\text{lb}}{\text{gal}} 100 \text{ gal} = 5$

- 6. Find the solution of the differential equation $\frac{dy}{dx} = 2x(1+y^2)$ satisfying the initial condition y(2) = 0.
 - **a.** $y = \tan(x^2) + 2$ **b.** $y = \tan^2(x - 2)$ **c.** $y = \tan(x^2 - 4)$ correctchoice **d.** $y = \tan(x^2 + \arctan 2)$ **e.** $y = \tan^2(x) - \tan^2 2$

$$\int \frac{dy}{1+y^2} = \int 2x \, dx \qquad \arctan y = x^2 + C \qquad \arctan 0 = 4 + C \qquad y = \tan(x^2 - 4)$$

7. Compute
$$\int_{1}^{2} \frac{1}{(x-2)^{2/3}} dx$$
a. $-\infty$
b. -3
c. -1
d. 3 correctchoice
e. ∞

$$\int_{1}^{2} \frac{1}{(x-2)^{2/3}} dx = \left[3(x-2)^{1/3}\right]_{1}^{2} = 3(2-2)^{1/3} - 3(1-2)^{1/3} = 3$$
8. Compute $\lim_{x \to 0} \frac{\sin(2x) - 2x}{3x^{3}}$
a. $-\frac{1}{9}$
b. -4
c. $-\frac{4}{9}$ correctchoice
d. $-\frac{8}{9}$
e. $-\frac{4}{3}$

$$\lim_{x \to 0} \frac{\sin(2x) - 2x}{3x^{3}} = \lim_{x \to 0} \frac{\left[2x - \frac{(2x)^{3}}{3!} + \cdots\right] - 2x}{3x^{3}} = \lim_{x \to 0} \left[-\frac{(2x)^{3}}{3!3x^{3}} + \cdots\right] = -\frac{8}{6 \cdot 3} = -\frac{4}{9}$$
9. Find the radius of convergence of the series $\sum_{x \to 0}^{\infty} -2^{n}$ ($x = 2^{n}$)

9. Find the radius of convergence of the series

$$\sum_{n=1}^{\infty} \frac{2^n}{(n+1)^2} (x-3)^n.$$

a. 0 **b.** $\frac{1}{2}$ correctchoice **c.** 2 **d.** $\frac{1}{3}$ **e.** 3

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1} (x-3)^{n+1}}{(n+2)^2} \frac{(n+1)^2}{2^n (x-3)^n} \right| = 2|x-3|$$

Convergent if

$$L = 2|x-3| < 1 \text{ or } |x-3| < \frac{1}{2}$$
. So $R = \frac{1}{2}$.

10. Which term is incorrect in the following partial fraction expansion?

$$\frac{-10x^2 + 5x^3 - 8x + 1}{(x-1)(x-3)^2(x^2+2)} = \frac{A}{\underbrace{x-1}} + \frac{B}{\underbrace{x-3}} + \frac{D}{\underbrace{(x-3)^2}} + \frac{Ex+F}{\underbrace{x^2+2}}$$

a. b. c. d.

e. They are all correct. correctchoice

A linear or linear to a power in the denominator gets a constant in the numerator. A quadratic or quadratic to a power in the denominator gets a linear in the numerator. So all terms are correct.

- **11.** A vector \vec{u} has length 3. A vector \vec{v} has length 4. The angle between them is 60°. Find $\vec{u} \cdot \vec{v}$.
 - **a.** 6 correctchoice **b.** $\frac{1}{24}$ **c.** $\frac{\sqrt{3}}{24}$ **d.** 24 **e.** $6\sqrt{3}$ $\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos(t)|$

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta = 3 \cdot 4 \cdot \cos 60^\circ = \frac{12}{2} = 6$$

12. Find an equation for the plane containing the two lines

 $L_1:$ x = 3 + 3t y = 1 + 4t z = 2 + 5t $L_2:$ x = 3 + t y = 1 z = 2 - t

a. -4x - 8y - 4z = 10 **b.** -4x + 8y - 4z = 10 **c.** x - 2y + z = 3 correctchoice **d.** x + 2y + z = 7**e.** x + 2y + z = 10

$$\vec{v}_1 = (3,4,5) \qquad \vec{v}_2 = (1,0,-1) \qquad \vec{N} = \vec{v}_1 \times \vec{v}_2 = (-4,8,-4) \qquad P = (3,1,2)$$
$$\vec{N} \cdot (X-P) = 0 \qquad -4(x-3) + 8(y-1) - 4(z-2) = 0$$
$$-4x + 8y - 4z = -12 \qquad x - 2y + z = 3$$

Show all your work. Partial credit will be given. You may not use a calculator.

13. Compute
$$\int \frac{\sqrt{x^2 - 1}}{x} dx$$
$$x = \sec \theta \quad dx = \sec \theta \tan \theta d\theta \quad \sqrt{x^2 - 1} = \sqrt{\sec^2 \theta - 1} = \tan \theta$$
$$\int \frac{\sqrt{x^2 - 1}}{x} dx = \int \frac{\tan \theta}{\sec \theta} \sec \theta \tan \theta d\theta$$
$$= \int \tan^2 \theta d\theta$$
$$= \int 1 - \sec^2 \theta d\theta$$
$$= \theta - \tan \theta$$
$$= \arccos x - \sqrt{x^2 - 1} + C$$

Г

14. The parametric curve given by $x = t^2$, $y = \frac{2}{3}t^3$, $z = \frac{1}{4}t^4$ for $0 \le t \le 2$ is rotated about the *y*-axis. Find the area of the surface of revolution. HINT: Factor the quantity in the square root.

$$\begin{aligned} \frac{dx}{dt} &= 2t, \qquad \frac{dy}{dt} = 2t^2, \qquad \frac{dz}{dt} = t^3 \\ A &= \int_0^2 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt \\ &= \int_0^2 2\pi t^2 \sqrt{(2t)^2 + (2t^2)^2 + (t^3)^2} dt \\ &= \int_0^2 2\pi t^2 \sqrt{4t^2 + 4t^4 + t^6} dt \\ &= \int_0^2 2\pi t^2 \sqrt{t^2 (2 + t^2)^2} dt = \int_0^2 2\pi t^3 (2 + t^2) dt = 2\pi \int_0^2 (2t^3 + t^5) dt \\ &= 2\pi \left[\frac{t^4}{2} + \frac{t^6}{6}\right]_0^2 \\ &= 2\pi \left[\frac{16}{2} + \frac{64}{6}\right] = 16\pi \left(1 + \frac{4}{3}\right) = \frac{112}{3}\pi \end{aligned}$$

15. The region in the first quadrant between the curves $y = x^2$ and y = 6 - x is rotated about the *y*-axis. Find the volume of the solid of revolution.

Use an *x*-integral with cylinders. $h = 6 - x - x^2$ r = xTo find the right endpoint, we solve $x^2 = 6 - x$, or $x^2 + x - 6 = 0$ or (x - 2)(x + 3) = 0. In the first quadrant x = 2. $V = \int_0^2 2\pi r h \, dx = \int_0^2 2\pi x (6 - x - x^2) \, dx = 2\pi \int_0^2 (6x - x^2 - x^3) \, dx$ $= 2\pi \Big[3x^2 - \frac{x^3}{3} - \frac{x^4}{4} \Big]_0^2 = 2\pi \Big[12 - \frac{8}{3} - 4 \Big]_0^2 = \frac{32}{3}\pi$

16. A water tank has the shape of a circular cylinder laying on its side. It is 3 ft in radius and 5 ft long. It is half full of water. How much work is needed to pump the water out a spout at the top? (The weight density of water is $\rho g = 64.5 \frac{\text{lb}}{\text{ft}^3}$ but you may leave your answer as a multiple of ρg .)

We put the origin at the center of a circular end with y measured downward. So the water at height y must be lifted a distance D = y + 3. To know the weight of a slab of water at height y, we must know its volume. Its length is 5. Its width is 2x.

Its thickness is dy. By the Pythagorean theorem

 $x = \sqrt{9 - y^2}$. So the weight is

$$dF = \rho g \, dV = \rho g 10x \, dy = \rho g 10 \sqrt{9 - y^2} \, dy.$$

So the work is

$$W = \int D \, dF = \int_0^3 (y+3)\rho g 10\sqrt{9-y^2} \, dy$$

= $10\rho g \int_0^3 y \sqrt{9-y^2} \, dy + 30\rho g \int_0^3 \sqrt{9-y^2} \, dy$

The first integral is a simple substitution. The second integral is the area of a quarter circle of radius 3.

$$W = 10\rho g \left[-\frac{1}{3} (9 - y^2)^{3/2} \right]_0^3 + 30\rho g \frac{1}{4} \pi (3)^2$$

= $10\rho g \frac{1}{3} (9)^{3/2} + \frac{135}{2} \rho g \pi = \rho g \left(90 + \frac{135}{2} \pi \right)$
= $64.5 \left(90 + \frac{135}{2} \pi \right)$