PART 1: MULTIPLE-CHOICE PROBLEMS

1. The area of the region bounded between the curves $y=0$ and $y=\sin x$ from $x=\pi / 4$ to $x=\pi / 2$ is

$$
\int_{\pi / 4}^{\pi / 2} \sin x d x=-\left.\cos x\right|_{\pi / 4} ^{\pi / 2}=-\cos (\pi / 2)+\cos (\pi / 4)=-0+\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
$$

The correct answer is (b).
2. The average value of the function $g(x)=\sqrt{1+2 x}$ on the interval [1, 4] is $\frac{1}{4-1} \int_{1}^{4} \sqrt{1+2 x} d x$. Using the substitution $u=1+2 x$ gives

$$
\frac{1}{3} \int_{1}^{4} \sqrt{1+2 x} d x=\frac{1}{3} \int_{3}^{9} \sqrt{u}\left(\frac{1}{2}\right) d u=\left.\frac{1}{6} \frac{u^{3 / 2}}{(3 / 2)}\right|_{3} ^{9}=\frac{1}{9}\left(9^{3 / 2}-3^{3 / 2}\right)=3-\frac{\sqrt{3}}{3}
$$

The correct answer is (d).
3. Using the method of disks, the volume of the resulting ellipsoid is

$$
V=\pi \int_{-2}^{2} y^{2} d x=\pi \int_{-2}^{2}\left(36-9 x^{2}\right) d x
$$

The correct answer is (a).
4. Using the trigonometric substitution $x=5 \tan \theta$, then $d x=5\left(\sec ^{2} \theta\right) d \theta$ and

$$
\int \frac{x^{2}}{\sqrt{x^{2}+25}} d x=\int \frac{25 \tan ^{2} \theta}{\sqrt{25 \tan ^{2} \theta+25}} 5\left(\sec ^{2} \theta\right) d \theta=\int \frac{25 \tan ^{2} \theta}{5 \sec \theta} 5\left(\sec ^{2} \theta\right) d \theta=25 \int\left(\tan ^{2} \theta\right)(\sec \theta) d \theta
$$

The correct answer is (a).
5. The integral $\int_{0}^{4} \sqrt{16-x^{2}} d x$ gives the area of a quarter circle of radius 4. The correct answer is (e).
6. Since $F(x)$ is an antiderivative of $F^{\prime}(x)$, by the Fundamental Theorem of Calculus,

$$
\int_{0}^{3} F^{\prime}(x) d x=\left.F(x)\right|_{0} ^{3}=F(3)-F(0)=5-1=4
$$

The correct answer is (d).
7. The curves intersect at $x=2$.

The area between the curves $y=x^{2}$ and $y=6-x$ from $x=0$ to $x=3$ is

$$
\int_{0}^{2}\left[(6-x)-x^{2}\right] d x+\int_{2}^{3}\left[x^{2}-(6-x)\right] d x=\int_{0}^{2}\left(6-x-x^{2}\right) d x+\int_{2}^{3}\left(x^{2}+x-6\right) d x
$$

The correct answer is (c).
8. A cross-section perpendicular to the y-axis and intersecting the y-axis at the point $(0, y)$ has area $A(y)=(2 x)^{2}=4 x^{2}=4\left[1-\left(y^{2} / 9\right)\right]$ The volume of the solid is

$$
V=\int_{-3}^{3} A(y) d y=\int_{-3}^{3} 4\left(1-\frac{y^{2}}{9}\right) d y
$$

The correct answer is (b).
9. Let $u=x$ and $d v=e^{-x} d x$. Then $d u=d x$ and $v=-e^{-x}$ and

$$
\int_{0}^{1} x e^{-x} d x=-\left.x e^{-x}\right|_{0} ^{1}-\int_{0}^{1}-e^{-x} d x=-e^{-1}+\int_{0}^{1} e^{-x} d x=-\frac{1}{e}-\left.e^{-x}\right|_{0} ^{1}=1-\frac{2}{e}
$$

The correct answer is (e).
10. A circular cross-section through the point $(0, y)$ has area $A(y)=\pi\left(\sqrt{25-y^{2}}\right)^{2}=\pi\left(25-y^{2}\right)$. The work in Joules required to empty the tank by pumping all of the water to the top of the tank is

$$
\int_{3}^{5} \rho g y A(y) d y=\rho g \int_{3}^{5} \pi\left(25 y-y^{3}\right) d y=\left.\pi \rho g\left(\frac{25 y^{2}}{2}-\frac{y^{4}}{4}\right)\right|_{3} ^{5}=\pi \rho g\left[\frac{625}{4}-\frac{369}{4}\right]=64 \pi \rho g
$$

The correct answer is (c).

PART 2: WORK-OUT PROBLEMS

11. Let $u=(\ln x)^{2}$ and $d v=d x$. Then $d u=2(\ln x)(1 / x) d x$ and $v=x$ and

$$
\begin{aligned}
\int(\ln x)^{2} d x & =x(\ln x)^{2}-\int x[2(\ln x)(1 / x)] d x \\
& =x(\ln x)^{2}-2 \int \ln x d x \\
& =x(\ln x)^{2}-2(x \ln x-x)+C \\
& =x(\ln x)^{2}-2 x \ln x+2 x+C
\end{aligned}
$$

12. Let $x=2 \sec \theta$, then $d x=2 \sec \theta \tan \theta d \theta$ and

$$
\begin{aligned}
\int_{2}^{2 \sqrt{2}} \frac{\sqrt{x^{2}-4}}{x} d x & =\int_{0}^{\pi / 4} \frac{\sqrt{4 \sec ^{2} \theta-4}}{2 \sec \theta} 2 \sec \theta \tan \theta d \theta \\
& =2 \int_{0}^{\pi / 4} \tan ^{2} \theta d \theta \\
& =2 \int_{0}^{\pi / 4}\left(\sec ^{2} \theta-1\right) d \theta \\
& =\left.2(\tan \theta-\theta)\right|_{0} ^{\pi / 4}=2-\frac{\pi}{2}
\end{aligned}
$$

13. The region R bounded by the curves $y=4-x^{2}$ and $y=-3 x$ is shown below.

(a) An integral with respect to x that gives the area of the region R is

$$
\int_{-1}^{4}\left[\left(4-x^{2}\right)-(-3 x)\right] d x=\int_{-1}^{4}\left(4+3 x-x^{2}\right) d x=\left.\left(4 x+\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{-1} ^{4}=\frac{56}{3}-\left(-\frac{13}{6}\right)=\frac{125}{6}
$$

(b) An expression involving integration with respect to y that represents the area of the region R is $\int_{-12}^{3}[\sqrt{4-y}-(-y / 3)] d y+\int_{3}^{4}[\sqrt{4-y}-(-\sqrt{4-y})] d y=\int_{-12}^{3}[\sqrt{4-y}+(y / 3)] d y+\int_{3}^{4} 2 \sqrt{4-y} d y$.
14. The region R bounded between the curves $y=x^{3}$ and $y=2 x^{2}$ is shown below.

(a) The volume of the solid obtained by revolving the region R about the x-axis is

$$
\pi \int_{0}^{2}\left[\left(2 x^{2}\right)^{2}-\left(x^{3}\right)^{2}\right] d x=\pi \int_{0}^{2}\left[4 x^{4}-x^{6}\right] d x=\left.\pi\left(\frac{4 x^{5}}{5}-\frac{x^{7}}{7}\right)\right|_{0} ^{2}=\frac{256 \pi}{35}
$$

(b) The volume of the solid obtained by revolving the region R about the y-axis is

$$
2 \pi \int_{0}^{2} x\left[2 x^{2}-x^{3}\right] d x=2 \pi \int_{0}^{2}\left[2 x^{3}-x^{4}\right] d x=\left.2 \pi\left(\frac{x^{4}}{2}-\frac{x^{5}}{5}\right)\right|_{0} ^{2}=\frac{16 \pi}{5}
$$

15. Let $u=\sec x$, then $d u=\sec x \tan x d x$ and

$$
\begin{aligned}
\int\left(\sec ^{5} x\right)\left(\tan ^{3} x\right) d x & =\int\left(\sec ^{4} x\right)\left(\tan ^{2} x\right) \sec x \tan x d x \\
& =\int\left(\sec ^{4} x\right)\left(\sec ^{2} x-1\right) \sec x \tan x d x \\
& =\int u^{4}\left(u^{2}-1\right) d u \\
& =\int\left(u^{6}-u^{4}\right) d u \\
& =\frac{u^{7}}{7}-\frac{u^{5}}{5}+C \\
& =\frac{\sec ^{7} x}{7}-\frac{\sec ^{5} x}{5}+C .
\end{aligned}
$$

