PART 1: MULTIPLE-CHOICE PROBLEMS

. The area of the region bounded between the curves y =0 and y =sinz from z =x/4 to x =7/2 is

sinzdx = —cosx = —cos(n/2) +cos(n/4) = -0+ — = — .
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The correct answer is (b).
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. The average value of the function g(z) = v/1+ 2z on the interval [1,4] is / V1+2zdx. Using
1

the substitution u =1+ 2z gives
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The correct answer is (d).

. Using the method of disks, the volume of the resulting ellipsoid is
2 2
V:ﬂ'/ dem:ﬂ/ (36—9x2)dx .
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The correct answer is (a).

. Using the trigonometric substitution = = 5tan, then dr = 5(5602 0) df and
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/ L iz = L5(sec2 0)do = / 5&5(S€C2 0)df = 25/(tan2 0)(sech) df .
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The correct answer is (a).

4
. The integral / \/ 16 — 22 dz gives the area of a quarter circle of radius 4.
0

The correct answer is (e).



6. Since F(x) is an antiderivative of F'/(z), by the Fundamental Theorem of Calculus,

The correct answer is (d).

7. The curves intersect at x = 2.
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The area between the curves y =z and y=6—=x from =0 to x =3 is

)

The correct answer is (c).
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[(6—x)—a:2]dx+/2 [ac2—(6—1:)]d1:=/ (6—x—x2)da:+/2 (m2+$—6)d$.
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8. A cross-section perpendicular to the y-axis and intersecting the y-axis at the point (0,y) has area
Aly) = (2;10)2 =422 = 41— (y2/9)] The volume of the solid is
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The correct answer is (b).

9. Let u=2 and dv =e Tdz. Then du=dx and v =—e" 7 and

1
/ ze Tdr = —xe ¥
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The correct answer is (e).

—/ —e_wdx:—e_l—l—/ e Tdr=—=—e% =1-2Z2.
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10. A circular cross-section through the point (0,y) has area A(y) == (\/25 — y2> =7(25— y2) . The

work in Joules required to empty the tank by pumping all of the water to the top of the tank is
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The correct answer is (c).

PART 2: WORK-OUT PROBLEMS

11. Let u = (lna:)2 and dv =dz. Then du=2(Inz)(1/z)dzr and v =2z and

/(lnx)2 dz = 2(nz)? — /x[2(lnx)(1/x)] do
= a:(lnx)2 — 2/lnxdm

x(lnaz)2 —2(zlnz—2)+C

x(lnx)2 —2zlhz+2x+C .

12. Let x = 2sec@, then dxr = 2secHtanfdf and
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13. The region R bounded by the curves y =4 — 22 and y = —3x is shown below.

(a) An integral with respect to = that gives the area of the region R is

/41[(4$2)(3x)]dx/41(4+3zz2)dx <4x+$_§> ﬁ:?_(_%) :%.

(b) An expression involving integration with respect to y that represents the area of the region R is
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14. The region R bounded between the curves y =z and y = 2z is shown below.

(a) The volume of the solid obtained by revolving the region R about the z-axis is
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(b) The volume of the solid obtained by revolving the region R about the y-axis is
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15. Let uw =secx, then du = secx tanx dr and

(sec4 x) (tan2 x)secx tanx dz

/ (secd ) (tan® z) dz —

(sec4 x) (sec2 x —1)secx tanx dx
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