PART 1: MULTIPLE-CHOICE PROBLEMS

Each problem is worth 5 points: NO partial credit will be given. The use of calculators is prohibited.

1. If
$$\frac{dy}{dx} = xy$$
 and $y(0) = 2$, then $y(2) =$
(a) e^4
(b) e^2
(c) $2e^2$
(d) $\frac{e^4}{2}$
(e) $2e^4$

2. Find
$$\int \frac{2}{x(x+2)} dx$$

(a) $\ln |x+1| - \ln |x+2| + C$
(b) $\ln |x| - \ln |x+2| + C$
(c) $\ln |x+2| - \ln |x| + C$
(d) $\ln |x| + \ln |x+2| + C$
(e) $\ln |x+1| + \ln |x| + C$

3. Which integral gives the area of the surface generated by rotating the curve $y = x^2$ from x = 0 to $x = \sqrt{2}$ about the y-axis?

(a)
$$\int_{0}^{\sqrt{2}} 2\pi x \sqrt{1 + 4x^2} \, dx$$

(b) $\int_{0}^{\sqrt{2}} 2\pi x \sqrt{1 + x^2} \, dx$
(c) $\int_{0}^{\sqrt{2}} \pi \sqrt{4y + 1} \, dy$
(d) $\int_{0}^{\sqrt{2}} 2\pi x^2 \sqrt{1 + 4x^2} \, dx$
(e) $\int_{0}^{2} \pi \sqrt{4y^2 + y} \, dy$

4. The improper integral $\int_1^\infty \frac{\cos^2 x}{x^2 + \sqrt{x}} dx$

(a) Converges by comparison to
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$

(b) Converges by comparison to
$$\int_1 \frac{1}{\sqrt{x}} dx$$

(c) Converges to 1

(d) Diverges by comparison to
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$

(e) Diverges by comparison to $\int_{1}^{\infty} \frac{1}{x^2} dx$

- 5. Objects with masses $m_1 = 2, m_2 = 4$ and $m_3 = 6$ are located along the x-axis at the points $x_1 = -2, x_2 = 1$ and $x_3 = 4$ respectively. The center of mass is located at $\bar{x} =$
 - (a) $\frac{8}{3}$ (b) $\frac{3}{8}$ (c) 0 (d) $\frac{1}{2}$ (e) 2
- 6. The approximation to $\int_{1}^{13} \frac{1}{x} dx$ obtained by using the Midpoint Rule with n = 3 is

(a)
$$4\left(1+\frac{1}{5}+\frac{1}{9}\right)$$

(b) $4\left(\frac{1}{5}+\frac{1}{9}+\frac{1}{13}\right)$
(c) $2\left(\frac{1}{3}+\frac{1}{7}+\frac{1}{11}\right)$
(d) $4\left(\frac{1}{3}+\frac{1}{7}+\frac{1}{11}\right)$
(e) $\frac{13}{3}\left(\frac{1}{3}+\frac{1}{7}+\frac{1}{11}\right)$

- 7. Find the length of the curve $y = (2/3)x^{3/2}$ from x = 0 to x = 8.
 - (a) 26
 - (b) $\frac{26}{3}$
 - (c) $\frac{52}{3}$
 - (d) $\frac{56}{3}$
 - (e) 18

8. Which integral gives the length of the curve $x = 2t + t^2$, $y = 2t - t^2$ for $0 \le t \le 3$?

(a)
$$\int_{0}^{3} 2\sqrt{1+t^{2}} dt$$

(b) $\int_{0}^{3} 2(1+t) dt$
(c) $\int_{0}^{3} \sqrt{8(1+2t^{2})} dt$
(d) $\int_{0}^{3} \sqrt{8(1+t^{2})} dt$
(e) $\int_{0}^{3} \sqrt{8(1+t)} dt$

9. Find the hydrostatic force (in Newtons) on one side of the vertical rectangular plate shown below standing at the bottom of a pool of water that is 12 meters deep. The acceleration due to gravity is $g = 9.8 \text{ m/sec}^2$ and the density of water is $\rho = 1000 \text{ kg/m}^3$.

- (a) 9800×31.5
- (b) 9800×315
- (c) 9800×10
- (d) 9800×100
- (e) 9800×62.5

10. A tank contains 10 kg of salt dissolved in 1000 L of water. Pure water enters the tank at a rate of 20 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. Let y(t) be the amount of salt (in kilograms) in the tank after t minutes. The initial value problem satisfied by y(t) is

(a)
$$\frac{dy}{dt} = \frac{1}{100} + \frac{y}{50}$$
, $y(0) = 10$
(b) $\frac{dy}{dt} = \frac{y}{50}$, $y(0) = 10$
(c) $\frac{dy}{dt} = -\frac{y}{100}$, $y(0) = 20$
(d) $\frac{dy}{dt} = \frac{1}{100} - \frac{y}{50}$, $y(0) = 10$
(e) $\frac{dy}{dt} = -\frac{y}{50}$, $y(0) = 10$

PART 2: WORK-OUT PROBLEMS

Each problem is worth 10 points; partial credit is possible. The use of calculators is prohibited. SHOW ALL WORK!

11. Use partial fractions to evaluate $\int \frac{x+16}{x^3+4x} dx$

12. Find the solution of the initial value problem

$$\frac{dy}{dx} = \frac{2y}{x} + x$$
$$y(1) = 2 .$$

13. Evaluate the integral $\int_1^\infty x e^{-x} dx$. You must clearly justify all conclusions in order to receive full credit.

14. Find the x -coordinate of the centroid of the region in the first quadrant that is bounded by the curves $y=4-x^2 \ , \ y=0 \ \text{ and } \ x=0$.

15. Suppose that the following data for the function y = f(x) were obtained from an experiment:

X	1.0	1.5	2.0	2.5	3.0	3.5	4.0
у	1/2	1/4	1/8	1/6	1/6	1/2	1/4

(a) Use Simpson's Rule with n = 6 to approximate $\int_{1}^{4} f(x) dx$.

(6 points)

(b) Given that $30 \le f^{(4)}(x) \le 60$ for all $1 \le x \le 4$, find the maximum possible error that results by using Simpson's Rule in part (a).

(4 points)