PART 1: MULTIPLE-CHOICE PROBLEMS

Each problem is worth 5 points: NO partial credit will be given. The use of calculators is prohibited.

1. If $\frac{d y}{d x}=x y$ and $y(0)=2$, then $y(2)=$
(a) e^{4}
(b) e^{2}
(c) $2 e^{2}$
(d) $\frac{e^{4}}{2}$
(e) $2 e^{4}$
2. Find $\int \frac{2}{x(x+2)} d x$
(a) $\ln |x+1|-\ln |x+2|+C$
(b) $\ln |x|-\ln |x+2|+C$
(c) $\ln |x+2|-\ln |x|+C$
(d) $\ln |x|+\ln |x+2|+C$
(e) $\ln |x+1|+\ln |x|+C$
3. Which integral gives the area of the surface generated by rotating the curve $y=x^{2}$ from $x=0$ to $x=\sqrt{2}$ about the y-axis?
(a) $\int_{0}^{\sqrt{2}} 2 \pi x \sqrt{1+4 x^{2}} d x$
(b) $\int_{0}^{\sqrt{2}} 2 \pi x \sqrt{1+x^{2}} d x$
(c) $\int_{0}^{\sqrt{2}} \pi \sqrt{4 y+1} d y$
(d) $\int_{0}^{\sqrt{2}} 2 \pi x^{2} \sqrt{1+4 x^{2}} d x$
(e) $\int_{0}^{2} \pi \sqrt{4 y^{2}+y} d y$
4. The improper integral $\int_{1}^{\infty} \frac{\cos ^{2} x}{x^{2}+\sqrt{x}} d x$
(a) Converges by comparison to $\int_{1}^{\infty} \frac{1}{x^{2}} d x$
(b) Converges by comparison to $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$
(c) Converges to 1
(d) Diverges by comparison to $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$
(e) Diverges by comparison to $\int_{1}^{\infty} \frac{1}{x^{2}} d x$
5. Objects with masses $m_{1}=2, m_{2}=4$ and $m_{3}=6$ are located along the x-axis at the points $x_{1}=-2, x_{2}=1$ and $x_{3}=4$ respectively. The center of mass is located at $\bar{x}=$
(a) $\frac{8}{3}$
(b) $\frac{3}{8}$
(c) 0
(d) $\frac{1}{2}$
(e) 2
6. The approximation to $\int_{1}^{13} \frac{1}{x} d x$ obtained by using the Midpoint Rule with $n=3$ is
(a) $4\left(1+\frac{1}{5}+\frac{1}{9}\right)$
(b) $4\left(\frac{1}{5}+\frac{1}{9}+\frac{1}{13}\right)$
(c) $2\left(\frac{1}{3}+\frac{1}{7}+\frac{1}{11}\right)$
(d) $4\left(\frac{1}{3}+\frac{1}{7}+\frac{1}{11}\right)$
(e) $\frac{13}{3}\left(\frac{1}{3}+\frac{1}{7}+\frac{1}{11}\right)$
7. Find the length of the curve $y=(2 / 3) x^{3 / 2}$ from $x=0$ to $x=8$.
(a) 26
(b) $\frac{26}{3}$
(c) $\frac{52}{3}$
(d) $\frac{56}{3}$
(e) 18
8. Which integral gives the length of the curve $x=2 t+t^{2}, y=2 t-t^{2}$ for $0 \leq t \leq 3$?
(a) $\int_{0}^{3} 2 \sqrt{1+t^{2}} d t$
(b) $\int_{0}^{3} 2(1+t) d t$
(c) $\int_{0}^{3} \sqrt{8\left(1+2 t^{2}\right)} d t$
(d) $\int_{0}^{3} \sqrt{8\left(1+t^{2}\right)} d t$
(e) $\int_{0}^{3} \sqrt{8}(1+t) d t$
9. Find the hydrostatic force (in Newtons) on one side of the vertical rectangular plate shown below standing at the bottom of a pool of water that is 12 meters deep. The acceleration due to gravity is $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$ and the density of water is $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

(a) 9800×31.5
(b) 9800×315
(c) 9800×10
(d) 9800×100
(e) 9800×62.5
10. A tank contains 10 kg of salt dissolved in 1000 L of water. Pure water enters the tank at a rate of 20 $\mathrm{L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate. Let $y(t)$ be the amount of salt (in kilograms) in the tank after t minutes. The initial value problem satisfied by $y(t)$ is
(a) $\frac{d y}{d t}=\frac{1}{100}+\frac{y}{50}, y(0)=10$
(b) $\frac{d y}{d t}=\frac{y}{50}, y(0)=10$
(c) $\frac{d y}{d t}=-\frac{y}{100}, y(0)=20$
(d) $\frac{d y}{d t}=\frac{1}{100}-\frac{y}{50}, y(0)=10$
(e) $\frac{d y}{d t}=-\frac{y}{50}, y(0)=10$

PART 2: WORK-OUT PROBLEMS

Each problem is worth 10 points; partial credit is possible. The use of calculators is prohibited. SHOW ALL WORK!
11. Use partial fractions to evaluate $\int \frac{x+16}{x^{3}+4 x} d x$
12. Find the solution of the initial value problem

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2 y}{x}+x \\
y(1) & =2
\end{aligned}
$$

13. Evaluate the integral $\int_{1}^{\infty} x e^{-x} d x$. You must clearly justify all conclusions in order to receive full credit.
14. Find the x-coordinate of the centroid of the region in the first quadrant that is bounded by the curves $y=4-x^{2}, y=0$ and $x=0$.
15. Suppose that the following data for the function $y=f(x)$ were obtained from an experiment:

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 6$	$1 / 6$	$1 / 2$	$1 / 4$

(a) Use Simpson's Rule with $n=6$ to approximate $\int_{1}^{4} f(x) d x$.
(b) Given that $30 \leq f^{(4)}(x) \leq 60$ for all $1 \leq x \leq 4$, find the maximum possible error that results by using Simpson's Rule in part (a).

