PART 1: MULTIPLE-CHOICE PROBLEMS

Each problem is worth 5 points: NO partial credit will be given. The use of calculators is prohibited.

1. Objects with masses $m_1=2$, $m_2=4$ and $m_3=6$ are located along the x-axis at the points $x_1=-2$, $x_2=1$ and $x_3=4$ respectively. The center of mass is located at $\bar{x}=$

- (a) $\frac{3}{8}$
- (b) $\frac{8}{3}$
- (c) 2
- (d) $\frac{1}{2}$
- (e) 0

2. Which integral gives the area of the surface generated by rotating the curve $y=x^2$ from x=0 to $x=\sqrt{2}$ about the y-axis?

(a)
$$\int_0^2 \pi \sqrt{4y^2 + y} \, dy$$

(b)
$$\int_{0}^{\sqrt{2}} \pi \sqrt{4y+1} \, dy$$

(c)
$$\int_0^{\sqrt{2}} 2\pi x \sqrt{1+x^2} \, dx$$

(d)
$$\int_0^{\sqrt{2}} 2\pi x^2 \sqrt{1 + 4x^2} \, dx$$

(e)
$$\int_0^{\sqrt{2}} 2\pi x \sqrt{1 + 4x^2} \, dx$$

3. Find $\int \frac{2}{x(x+2)} dx$

(a)
$$\ln|x| + \ln|x+2| + C$$

(b)
$$\ln|x+2| - \ln|x| + C$$

(c)
$$\ln|x| - \ln|x+2| + C$$

(d)
$$\ln|x+1| - \ln|x+2| + C$$

(e)
$$\ln|x+1| + \ln|x| + C$$

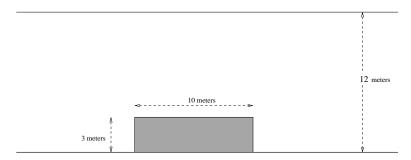
- 4. The approximation to $\int_1^{13} \frac{1}{x} dx$ obtained by using the Midpoint Rule with n=3 is
 - (a) $4\left(1+\frac{1}{5}+\frac{1}{9}\right)$
 - (b) $4\left(\frac{1}{3} + \frac{1}{7} + \frac{1}{11}\right)$
 - (c) $4\left(\frac{1}{5} + \frac{1}{9} + \frac{1}{13}\right)$
 - (d) $\frac{13}{3} \left(\frac{1}{3} + \frac{1}{7} + \frac{1}{11} \right)$
 - (e) $2\left(\frac{1}{3} + \frac{1}{7} + \frac{1}{11}\right)$
- 5. Which integral gives the length of the curve $\ x=2t+t^2$, $\ y=2t-t^2$ for $\ 0\leq t\leq 3$?
 - (a) $\int_0^3 \sqrt{8(1+t^2)} dt$
 - (b) $\int_0^3 \sqrt{8}(1+t) dt$
 - (c) $\int_0^3 \sqrt{8(1+2t^2)} dt$
 - (d) $\int_0^3 2\sqrt{1+t^2} \, dt$
 - (e) $\int_0^3 2(1+t) dt$
- 6. The improper integral $\int_1^\infty \frac{\cos^2 x}{x^2 + \sqrt{x}} dx$
 - (a) Converges by comparison to $\int_1^\infty \frac{1}{\sqrt{x}} dx$
 - (b) Converges by comparison to $\int_1^\infty \frac{1}{x^2} dx$
 - (c) Diverges by comparison to $\int_1^\infty \frac{1}{\sqrt{x}} dx$
 - (d) Diverges by comparison to $\int_1^\infty \frac{1}{x^2} dx$
 - (e) Converges to 1

- 7. Find the length of the curve $y = (2/3)x^{3/2}$ from x = 0 to x = 8.
 - (a) 18
 - (b) $\frac{26}{3}$
 - (c) $\frac{56}{3}$
 - (d) $\frac{52}{3}$
 - (e) 26

- 8. If $\frac{dy}{dx} = xy$ and y(0) = 2, then y(2) =
 - (a) $2e^2$
 - (b) e^2
 - (c) $2e^4$
 - (d) $\frac{e^4}{2}$
 - (e) e^4

9. A tank contains 10 kg of salt dissolved in 1000 L of water. Pure water enters the tank at a rate of 20 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. Let y(t) be the amount of salt (in kilograms) in the tank after t minutes. The initial value problem satisfied by y(t) is

(a)
$$\frac{dy}{dt} = -\frac{y}{100}$$
, $y(0) = 20$


(b)
$$\frac{dy}{dt} = \frac{1}{100} - \frac{y}{50}$$
, $y(0) = 10$

(c)
$$\frac{dy}{dt} = \frac{1}{100} + \frac{y}{50}$$
, $y(0) = 10$

(d)
$$\frac{dy}{dt} = -\frac{y}{50}$$
, $y(0) = 10$

(e)
$$\frac{dy}{dt} = \frac{y}{50}$$
, $y(0) = 10$

10. Find the hydrostatic force (in Newtons) on one side of the vertical rectangular plate shown below standing at the bottom of a pool of water that is 12 meters deep. The acceleration due to gravity is $g = 9.8 \text{ m/sec}^2$ and the density of water is $\rho = 1000 \text{ kg/m}^3$.

- (a) 9800×62.5
- (b) 9800×10
- (c) 9800 × 100
- (d) 9800×31.5
- (e) 9800×315


PART 2: WORK-OUT PROBLEMS

Each problem is worth 10 points; partial credit is possible. The use of calculators is prohibited. SHOW ALL WORK!

11. Find the solution of the initial value problem

$$\frac{dy}{dx} = \frac{2y}{x} + x$$
$$y(1) = 2.$$

12. Use partial fractions to evaluate $\int \frac{x+18}{x^3+9x} dx$

14. Evaluate the integral $\int_1^\infty x e^{-x} dx$. You must clearly justify all conclusions in order to receive full credit.

15. Suppose that the following data for the function y = f(x) were obtained from an experiment:

X	1	4/3	5/3	2	7/3	8/3	3
y	1/2	1/8	1/2	1/6	1/6	1/4	1/2

(a) Use Simpson's Rule with
$$n=6$$
 to approximate $\int_1^3 \ f(x) \, dx$.

(6 points)

(b) Given that $20 \le f^{(4)}(x) \le 80$ for all $1 \le x \le 3$, find the maximum possible error that results by using Simpson's Rule in part (a). (4 points)