VERSION B SOLUTIONS

PART 1: MULTIPLE-CHOICE PROBLEMS

1. The center of mass is located at

$$
\bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}=\frac{(2)(-2)+(4)(1)+(6)(4)}{2+4+6}=\frac{24}{12}=2 .
$$

The correct answer is (c).
2. The area of the surface generated by rotating the curve $y=x^{2}$ from $x=0$ to $x=\sqrt{2}$ about the y-axis is

$$
\int_{0}^{\sqrt{2}} 2 \pi x \sqrt{1+(d y / d x)^{2}} d x=\int_{0}^{\sqrt{2}} 2 \pi x \sqrt{1+(2 x)^{2}} d x=\int_{0}^{\sqrt{2}} 2 \pi x \sqrt{1+4 x^{2}} d x
$$

The correct answer is (e).
3. Now

$$
\begin{aligned}
\frac{2}{x(x+2)} & =\frac{1}{x}-\frac{1}{x+2} \\
\int \frac{2}{x(x+2)} d x & =\int \frac{1}{x} d x-\int \frac{1}{x+2} d x=\ln |x|-\ln |x+2|+C .
\end{aligned}
$$

The correct answer is (c).
4. The partition of $[1,13]$ when $n=3$ is $\{1,5,9,13\}$. So $\Delta x=4$ and the midpoints of the subintervals are 3,7 and 11 . Thus, $M_{3}=(4)[(1 / 3)+(1 / 7)+(1 / 11)]$.
The correct answer is (b).
5. The length of the curve $x=2 t+t^{2}, y=2 t-t^{2}$ for $0 \leq t \leq 3$ is

$$
\int_{0}^{3} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t=\int_{0}^{3} \sqrt{(2+2 t)^{2}+(2-2 t)^{2}} d t=\int_{0}^{3} \sqrt{8\left(1+t^{2}\right)} d t
$$

The correct answer is (a).
6. Now

$$
0 \leq \frac{\cos ^{2} x}{x^{2}+\sqrt{x}} \leq \frac{1}{x^{2}}
$$

for all $x \geq 1$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ converges. The correct answer is (b).
7. The length of the curve $y=(2 / 3) x^{3 / 2}$ from $x=0$ to $x=8$ is

$$
\int_{0}^{8} \sqrt{1+(d y / d x)^{2}} d x=\int_{0}^{8} \sqrt{1+(\sqrt{x})^{2}} d x=\int_{0}^{8} \sqrt{1+x} d x=\left.\frac{2}{3}(1+x)^{3 / 2}\right|_{0} ^{8}=\frac{52}{3}
$$

The correct answer is (d).
8. The differential equation is separable.

$$
\begin{aligned}
\frac{d y}{d x} & =x y \\
\frac{1}{y} d y & =x d x \\
\int \frac{1}{y} d y & =\int x d x+C \\
\ln y & =\frac{x^{2}}{2}+C \\
y & =e^{\left(x^{2} / 2\right)+C}
\end{aligned}
$$

Now $y(0)=2$, so $C=\ln 2$ and we have that $y(x)=2 e^{\left(x^{2} / 2\right)}$. Thus, $y(2)=2 e^{2}$ and the correct answer is (a).
9. If $y(t)$ is the amount of salt (in kilograms) in the tank after t minutes, then

$$
\frac{d y}{d t}=\text { rate in }- \text { rate out }=0-\left(\frac{y(t)}{1000} \frac{\mathrm{~kg}}{\mathrm{~L}}\right)\left(20 \frac{\mathrm{~L}}{\min }\right)=-\frac{y(t)}{50} \frac{\mathrm{~kg}}{\mathrm{~min}}
$$

Now $y(0)=10 \mathrm{~kg}$ and the correct answer is (d).
10. The hydrostatic force (in Newtons) on one side of the vertical rectangular plate is

$$
\rho g \int_{9}^{12} 10 y d y=9800 \int_{9}^{12} 10 y d y=9800 \times 315
$$

The correct answer is (e).

PART 2: WORK-OUT PROBLEMS

11. The differential equation $\frac{d y}{d x}-(2 / x) y=x$ has integrating factor $I(x)=e^{\int-(2 / x) d x}=e^{-2 \ln x}=x^{-2}$. Thus,

$$
\begin{aligned}
x^{-2}\left(\frac{d y}{d x}-(2 / x) y\right) & =x^{-1} \\
\frac{d}{d x}\left(x^{-2} y\right) & =x^{-1} \\
x^{-2} y & =\ln x+C \\
y & =x^{2}(\ln x+C)
\end{aligned}
$$

Now $2=y(1)=(1)^{2}(\ln 1+C)=C$, so $y=x^{2}(2+\ln x)$.
12. Now

$$
\begin{aligned}
\frac{x+18}{x^{3}+9 x} & =\frac{x+18}{x\left(x^{2}+9\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+9} \\
& =\frac{A x^{2}+9 A+B x^{2}+C x}{x^{3}+9 x} \\
& =\frac{(A+B) x^{2}+C x+9 A}{x^{3}+9 x}
\end{aligned}
$$

so

$$
\begin{aligned}
A+B & =0 \\
C & =1 \\
9 A & =18
\end{aligned}
$$

the solution of which is $A=2, B=-2$ and $C=1$. Thus

$$
\begin{aligned}
\int \frac{x+18}{x^{3}+9 x} d x & =\int\left(\frac{2}{x}+\frac{1-2 x}{x^{2}+9}\right) d x \\
& =\int \frac{2}{x} d x+\int \frac{1}{x^{2}+9} d x-\int \frac{2 x}{x^{2}+9} d x \\
& =2 \ln |x|+\frac{1}{3} \tan ^{-1}(x / 3)-\ln \left(x^{2}+9\right)+C
\end{aligned}
$$

13. The x-coordinate of the centroid of the region in the first quadrant that is bounded by the curves $y=4-x^{2}, y=0$ and $x=0$ is

$$
\bar{x}=\frac{\int_{0}^{2} x\left(4-x^{2}\right) d x}{\int_{0}^{2} 4-x^{2} d x}=\frac{\int_{0}^{2} 4 x-x^{3} d x}{\int_{0}^{2} 4-x^{2} d x}=\frac{\left.\left(2 x^{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{2}}{\left.\left(4 x-\frac{x^{3}}{3}\right)\right|_{0} ^{2}}=\frac{3}{4}
$$

14. An integration by parts gives

$$
\int_{1}^{b} x e^{-x} d x=-\left.x e^{-x}\right|_{1} ^{b}+\int_{1}^{b} e^{-x} d x=2 e^{-1}-b e^{-b}-e^{-b}
$$

Now $\lim _{b \rightarrow \infty} b e^{-b}=0$ and $\lim _{b \rightarrow \infty} e^{-b}=0$, so

$$
\int_{1}^{\infty} x e^{-x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} x e^{-x} d x=\lim _{b \rightarrow \infty}\left(2 e^{-1}-b e^{-b}-e^{-b}\right)=2 e^{-1}
$$

15. The partition of $[1,3]$ when $n=6$ is $\{1,4 / 3,5 / 3,2,7 / 3,8 / 3,3\}$. So $\Delta x=1 / 3$ and

$$
\begin{aligned}
\int_{1}^{3} f(x) d x \approx S_{6} & =\frac{\Delta x}{3}[f(1)+4 f(4 / 3)+2 f(5 / 3)+4 f(2)+2 f(7 / 3)+4 f(8 / 3)+f(3)] \\
& =\frac{1}{9}[(1 / 2)+4(1 / 8)+2(1 / 2)+4(1 / 6)+2(1 / 6)+4(1 / 4)+(1 / 2)] \\
& =\frac{1}{2}
\end{aligned}
$$

Now $\left|f^{(4)}(x)\right| \leq 80$ for all $1 \leq x \leq 3$, so

$$
\left|E_{S}\right| \leq \frac{80(3-1)^{5}}{180(6)^{4}}=\frac{8}{729}
$$

