M152 Exam \#3 Solutions

Spring 2002

1. Now $0 \leq\left|\frac{\sin 2 n}{n}\right| \leq \frac{1}{n}$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$. By the squeeze theorem, $\lim _{n \rightarrow \infty} \frac{\sin 2 n}{n}=0$.

The correct answer is (d).
2. Now

$$
\begin{aligned}
& \langle 1 / \sqrt{3},-1 / \sqrt{3},-1 / \sqrt{3}\rangle \cdot \mathbf{a}=(1 / \sqrt{3})(1)+(-1 / \sqrt{3})(-1)+(-1 / \sqrt{3})(2)=0 \\
& \|\langle 1 / \sqrt{3},-1 / \sqrt{3},-1 / \sqrt{3}\rangle\|=\sqrt{(1 / \sqrt{3})^{2}+(-1 / \sqrt{3})^{2}+(-1 / \sqrt{3})^{2}}=\sqrt{(1 / 3)+(1 / 3)+(1 / 3)}=1
\end{aligned}
$$

The correct answer is (b).
3. $\sum_{n=1}^{\infty} \frac{3^{n-1}}{5^{n}}=\sum_{n=1}^{\infty} \frac{1}{3}\left(\frac{3}{5}\right)^{n}=\frac{1}{3} \sum_{n=1}^{\infty}\left(\frac{3}{5}\right)^{n}=\frac{1}{3}\left(\frac{(3 / 5)}{1-(3 / 5)}\right)=\frac{1}{2}$.

The correct answer is (e).
4. If $f(x)=\ln x$, then $f^{\prime}(x)=1 / x, f^{\prime \prime}(x)=-1 /\left(x^{2}\right)$ and $f^{\prime \prime \prime}(x)=2 /\left(x^{3}\right)$. Thus, $f(1)=0, f^{\prime}(1)=$ $1, f^{\prime \prime}(1)=-1$ and $f^{\prime \prime \prime}(1)=2$. The third-degree Taylor polynomial for $f(x)=\ln x$ at $a=1$ is

$$
f(1)+\frac{f^{\prime}(1)}{1!}(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{\prime \prime \prime}(1)}{3!}(x-1)^{3}=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3} .
$$

The correct answer is (a).
5. $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{2 n^{2}+2}{3 n^{2}+1}=\frac{2}{3}$.

The correct answer is (b).
6. $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}=\lim _{j \rightarrow \infty} \sum_{n=1}^{j} \frac{1}{(n+2)(n+3)}=\lim _{j \rightarrow \infty} \sum_{n=1}^{j}\left(\frac{1}{n+2}-\frac{1}{n+3}\right)=\lim _{j \rightarrow \infty}\left(\frac{1}{3}-\frac{1}{j+3}\right)=\frac{1}{3}$.

The correct answer is (a).
7. Now $0 \leq \frac{n}{n^{3}+5}<\frac{1}{n^{2}}$ for all $n \geq 1$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. Thus, $\sum_{n=1}^{\infty} \frac{n}{n^{3}+5}$ converges by the comparison test.
The correct answer is (c).
8. Now $0=x^{2}+y^{2}+z^{2}+6 x-8 y=(x+3)^{2}-9+(y-4)^{2}-16+z^{2}$, so $(x-(-3))^{2}+(y-4)^{2}+z^{2}=25$. The center of the sphere is located at $(-3,4,0)$.

The correct answer is (d).
9. If $f(x)=1 /\left(x(\ln x)^{2}\right)$, then $f(x)>0$ and $f(x)$ is decreasing on $[2, \infty)$. Moreover,

$$
\int_{2}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{1}{x(\ln x)^{2}} d x=\lim _{b \rightarrow \infty}-\left.\frac{1}{\ln x}\right|_{2} ^{b}=\lim _{b \rightarrow \infty}\left(\frac{1}{\ln 2}-\frac{1}{\ln b}\right)=\frac{1}{\ln 2}
$$

The series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ converges by the integral test.
The correct answer is (d).
10. $\sum_{n=1}^{\infty}\left|\frac{1}{n^{1.001}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{1.001}}=\sum_{n=1}^{\infty} \frac{1}{n^{p}}$, which converges since $p=1.001>1$.

The correct answer is (e).
11. Now

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1}(x-3)^{n+1}}{(n+1) 2^{n+1}}}{\frac{(-1)^{n}(x-3)^{n}}{n\left(2^{n}\right)}}\right|=\lim _{n \rightarrow \infty} \frac{n|x-3|}{2(n+1)}=\frac{|x-3|}{2}<1
$$

when $|x-3|<2$. Thus, the radius of convergence of the power series is $R=2$.
When $x=5$,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{n\left(2^{n}\right)}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

which converges by the alternating series test, since $1 / n>0$ and $1 / n \geq 1 /(n+1)$ for all n and $\lim _{n \rightarrow \infty} 1 / n=0$.

When $x=1$,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{n\left(2^{n}\right)}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

which is the harmonic series and diverges. The interval of convergence of the power series is $1<x \leq 5$.
12. (a) The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+1}$ has positive terms and diverges by the limit comparison test. Indeed,

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n}+1}}{\frac{1}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n}+1}=\lim _{n \rightarrow \infty} \frac{1}{1+(1 / \sqrt{n})}=1>0
$$

and $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges when $p=1 / 2$.
(b) The series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+1}$ diverges since $\lim _{n \rightarrow \infty}(-1)^{n} \frac{n}{n+1} \neq 0$. In fact, this limit doesn't exist.
13. (a) Now $1 /(1-t)=\sum_{n=0}^{\infty} t^{n}$ for $|t|<1$. Let $t=-x^{2} / 4$. Then for $|x|<2$,

$$
\frac{1}{4+x^{2}}=\frac{1}{4}\left(\frac{1}{1+\left(x^{2} / 4\right)}\right)=\frac{1}{4}\left(\frac{1}{1-t}\right)=\frac{1}{4} \sum_{n=0}^{\infty} t^{n}=\frac{1}{4} \sum_{n=0}^{\infty}\left(-x^{2} / 4\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{4^{n+1}} .
$$

The radius of convergence of this power series is $R=2$.
(b) For $|x|<2$,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{4+x^{2}}\right) & =\sum_{n=0}^{\infty} \frac{d}{d x}\left(\frac{(-1)^{n} x^{2 n}}{4^{n+1}}\right) \\
-\frac{2 x}{\left(4+x^{2}\right)^{2}} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n) x^{2 n-1}}{4^{n+1}} \\
\frac{2 x}{\left(4+x^{2}\right)^{2}} & =\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(2 n) x^{2 n-1}}{4^{n+1}}
\end{aligned}
$$

The radius of convergence of the differentiated power series is also $R=2$.
14. (a) For all t,

$$
\sin t=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+1}}{(2 n+1)!}
$$

and

$$
\sin \left(t^{2}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(t^{2}\right)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n+2}}{(2 n+1)!}
$$

Then

$$
\int_{0}^{x} \sin \left(t^{2}\right) d t=\int_{0}^{x} \sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n+2}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \int_{0}^{x} t^{4 n+2} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(4 n+3)((2 n+1)!)} x^{4 n+3}
$$

for all x. The Maclaurin series for $\int_{0}^{x} \sin \left(t^{2}\right) d t$ is $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(4 n+3)((2 n+1)!)} x^{4 n+3}$.
(b) Using the first 2 terms of the series above,

$$
\int_{0}^{0.1} \sin \left(t^{2}\right) d t \approx \sum_{n=0}^{1} \frac{(-1)^{n}}{(4 n+3)((2 n+1)!)}(0.1)^{4 n+3}=\frac{(0.1)^{3}}{3}-\frac{(0.1)^{7}}{(7)(6)}
$$

The Maclaurin series for $\int_{0}^{0.1} \sin \left(t^{2}\right) d t$ is an alternating series, so

$$
\left|\int_{0}^{0.1} \sin \left(t^{2}\right) d t-\sum_{n=0}^{1} \frac{(-1)^{n}}{(4 n+3)((2 n+1)!)}(0.1)^{4 n+3}\right|<\frac{(0.1)^{11}}{(11)(5!)}
$$

15. The series $\sum_{n=1}^{\infty}[1-\cos (1 / n)]$ has positive terms,

$$
\lim _{n \rightarrow \infty} \frac{1-\cos (1 / n)}{\left(1 / n^{2}\right)}=\lim _{t \rightarrow 0} \frac{1-\cos t}{t^{2}}=\lim _{t \rightarrow 0} \frac{\sin t}{2 t}=\lim _{t \rightarrow 0} \frac{\cos t}{2}=\frac{1}{2}>0
$$

and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. Thus, $\sum_{n=1}^{\infty}[1-\cos (1 / n)]$ converges by the limit comparison test.

