1. Find the average value of \(f(x) = \cos x \) on the interval \(-\frac{\pi}{4} \leq x \leq \frac{\pi}{4} \).
 a. \(\frac{2\sqrt{2}}{\pi} \)
 b. \(\sqrt{2} \frac{\pi}{4} \)
 c. \(\sqrt{2} \)
 d. \(\frac{1}{\sqrt{2}} \)
 e. \(\pi \frac{\sqrt{2}}{\sqrt{2}} \)

2. The ellipse \(\frac{x^2}{4} + \frac{y^2}{16} = 1 \) is revolved about the \(x \)-axis. Which integral gives the volume of the resulting ellipsoid?
 a. \(\int_{-2}^{2} 2\pi x \sqrt{16 - 4x^2} \, dx \)
 b. \(\int_{-4}^{4} 2\pi (16 - 4x^2)^2 \, dx \)
 c. \(\int_{-2}^{2} \pi (16 - 4x^2) \, dx \)
 d. \(\int_{-4}^{4} 2\pi x \sqrt{16 - 4x^2} \, dx \)
 e. \(\int_{-2}^{2} \pi (16 - 4x^2)^2 \, dx \)

3. Compute \(\int_{0}^{\pi/4} \cos \theta \sin^3 \theta \, d\theta \).
 a. \(\frac{1}{2} \)
 b. \(\frac{1}{4} \)
 c. \(\frac{1}{8} \)
 d. \(\frac{1}{16} \)
 e. \(\frac{1}{32} \)
4. Compute \(\int_{0}^{\ln 2} xe^{-x} \, dx \).

 a. \(\frac{1}{2} + \frac{1}{2} \ln 2 \)
 b. \(\frac{1}{2} - \frac{1}{2} \ln 2 \)
 c. \(\frac{1}{2} \ln 2 - \frac{1}{2} \)
 d. \(-\frac{1}{2} \ln 2 - \frac{1}{2} \)
 e. Divergent

5. Use the Trapezoid Rule with \(n = 4 \) intervals to approximate the integral \(\int_{1}^{9} (9 + x^2) \, dx \).

 a. 240
 b. 312
 c. 314 \(\frac{1}{3} \)
 d. 320
 e. 400

6. A barrel initially contains 3 cups of sugar dissolved in 4 gallons of water. You then add pure water at the rate of 2 gallons per minute while the mixture is draining out of a hole in the bottom at 2 gallons per minute. Find the amount of sugar in the barrel after 2 minute.

 a. \(\frac{3}{\sqrt{e}} \)
 b. \(\frac{3}{e} \)
 c. \(3e \)
 d. \(3 \sqrt{e} \)
 e. \(\frac{3}{e^2} \)
7. As \(n \) approaches infinity, the sequence \(\left\{ \frac{1 - \cos n}{n^2} \right\} \)

 a. converges to \(-\frac{1}{2}\)
 b. converges to 0
 c. converges to \(\frac{1}{2}\)
 d. converges to 1
 e. diverges

8. Compute \(\sum_{n=1}^{\infty} \left(\frac{n}{n+1} - \frac{n+1}{n+2} \right) \)

 a. \(-\frac{1}{2}\)
 b. \(\frac{1}{2}\)
 c. 1
 d. 2
 e. Divergent

9. Find the 4th degree Taylor polynomial for \(f(x) = x^2 - x \) about \(x = 2 \).

 a. \(T_4(x) = 2 + 3(x - 2) + (x - 2)^2 + 3(x - 2)^3 + (x - 2)^4 \)
 b. \(T_4(x) = 2 + 3(x - 2) + 2(x - 2)^2 + 3(x - 2)^3 + 2(x - 2)^4 \)
 c. \(T_4(x) = 2 + 3(x - 2) + (x - 2)^2 \)
 d. \(T_4(x) = 2 + 3(x - 2) + 2(x - 2)^2 \)
 e. \(T_4(x) \) cannot be found because \(x = 2 \) is outside the interval of convergence.
10. A triangle has vertices $A = (0, 3, 2)$, $B = (-2, 3, 0)$ and $C = (-2, 0, 3)$. Find the angle at vertex B.

 a. $\frac{\pi}{6}$
 b. $\frac{\pi}{3}$
 c. $\frac{\pi}{2}$
 d. $\frac{2\pi}{3}$
 e. $\frac{5\pi}{6}$

11. If \vec{u} points South-West and \vec{v} points Up, which way does $\vec{u} \times \vec{v}$ point?

 a. South-East
 b. North-East
 c. North-West
 d. 45° Up from North-West
 e. 45° Down from North-West

12. Find the area of a triangle with edges $\vec{a} = (3, -2, 1)$ and $\vec{b} = (-1, 0, 1)$.

 a. 1
 b. 2
 c. $\sqrt{6}$
 d. 6
 e. $2\sqrt{6}$
13. (12 points) The end of a water trough occupies
the region between \(y = x^2 \) m and \(y = 9 \) m.
It is filled to a depth of \(y = 4 \) m.
Find the force on the end of the trough.
Give your answer in terms of \(\rho \) (the density of water)
and \(g \) (the acceleration of gravity).

14. (12 points) Compute \(\int_{3}^{3x} \frac{\sqrt{x^2 - 9}}{x} \, dx. \)
15. (12 points) Find the arc length of the curve \(y = \frac{x^2}{4} - \frac{\ln x}{2} \) between \(x = 1 \) and \(x = e \).

16. (12 points) The Taylor series \(f(x) = \sum_{n=1}^{\infty} \frac{H_n}{2^n} (x - 1)^{n-1} \) is obtained by differentiating the series \(g(x) = \sum_{n=0}^{\infty} \frac{(x - 1)^n}{2^n} = \sum_{n=0}^{\infty} \left(\frac{x - 1}{2} \right)^n \). What is the function \(f(x) \)? What is the interval of convergence for \(f(x) \) (including endpoints)? Justify your answers.