Name	Sec ID.		1-11	/66
MATH 152	Final Exam	Fall 2007	12	/12
Sections 513 - 515		P. Yasskin	13	/15
Multiple Choice: (6 points each)			14	/10
			Total	/103

1. A plate is bounded by the curves $y = x^2$, $y = -x^2$ and x = 2 measured in meters. Find the total mass of the plate if the surface density is $\rho = 3 \text{ kg/m}^2$.

- **2**. A plate is bounded by the curves $y = x^2$, $y = -x^2$ and x = 2 measured in meters. Find the center of mass of the plate if the surface density is $\rho = 3 \text{ kg/m}^2$.
 - a. $\left(\frac{3}{4}, 0\right)$ b. $\left(\frac{3}{4}, \frac{1}{10}\right)$ c. $\left(\frac{3}{4}, \frac{6}{5}\right)$ d. $\left(\frac{3}{2}, 0\right)$ e. $\left(\frac{3}{2}, \frac{6}{5}\right)$

- **3.** Compute $\int x^2 e^{2x} dx$.
 - **a.** $\frac{x^{2}}{2}e^{2x} \frac{x}{2}e^{2x} \frac{1}{4}e^{2x} + C$ **b.** $\frac{x^{2}}{2}e^{2x} - \frac{x}{2}e^{2x} + \frac{1}{4}e^{2x} + C$ **c.** $\frac{x^{2}}{2}e^{2x} - \frac{x}{2}e^{2x} - \frac{1}{2}e^{2x} + C$ **d.** $\frac{x^{2}}{2}e^{2x} - \frac{x}{2}e^{2x} + \frac{1}{2}e^{2x} + C$ **e.** $\frac{x^{2}}{2}e^{2x} - \frac{x}{4}e^{2x} - \frac{1}{4}e^{2x} + C$

4. The parametric curve $x = 2t^2$ $y = t^3$ for $0 \le t \le 1$ is rotated about the *y*-axis. Which integral gives the area of the surface swept out?

a.
$$2\pi \int_{0}^{1} t \sqrt{16 + 9t^2} dt$$

b. $2\pi \int_{0}^{1} t^3 \sqrt{16 + 9t^2} dt$
c. $4\pi \int_{0}^{1} t^3 \sqrt{16 + 9t^2} dt$
d. $2\pi \int_{0}^{1} t^4 \sqrt{16 + 9t^2} dt$
e. $4\pi \int_{0}^{1} t^4 \sqrt{16 + 9t^2} dt$

5. Which term appears in the partial fraction expansion of

$$\frac{3x^2-4x-20}{(x-2)^2(x^2+4)}?$$

a.
$$\frac{-2}{(x-2)^2}$$

b. $\frac{1}{(x-2)^2}$
c. $\frac{2}{(x-2)^2}$
d. $\frac{-2}{(x-2)}$
e. $\frac{1}{(x-2)}$

6. Find the solution of the differential equation $x\frac{dy}{dx} = 2y + x^3$ satisfying the initial condition y(1) = 2.

a.
$$y = x^3 - \frac{7}{4}x^2$$

b. $y = x^3 + x^2$
c. $y = 2x^3 - x^2$
d. $y = \frac{9}{5x^2} + \frac{1}{5}x^3$
e. $y = \frac{5}{3x^2} + \frac{1}{3}x^3$

- 7. The region in the first quadrant bounded by the curves $y = x^2$, y = 0 and x = 2 is rotated about the *y*-axis. Find the volume of the solid swept out.
 - **a**. $\frac{32}{5}\pi$
 - **b**. $\frac{64}{5}\pi$
 - **c**. 8π
 - **d**. 4π
 - **e**. 2π

8. If you approximate $f(x) = \ln(x)$ on the interval $\left[\frac{1}{2}, \frac{3}{2}\right]$ by its 3rd degree Taylor polynomial centered at x = 1, namely $T_3(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3$, then the Taylor Remainder Theorem says the error $|R_3(x)|$ is less than

Taylor Remainder Theorem:

If $T_n(x)$ is the nth degree Taylor polynomial for f(x) centered at x = athen there is a number c between a and x such that the remainder is

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{(n+1)!}$$

a. 1

- **b**. $\frac{1}{2}$
- **c**. $\frac{1}{4}$
- **d**. $\frac{1}{8}$
- **e**. 0

- 9. Compute $\lim_{x\to 0} \frac{\sin(x^2) x^2}{e^{(x^3)} 1 x^3}$.
 - **a.** $-\frac{1}{6}$ **b.** $\frac{1}{6}$ **c.** $\frac{2}{3}$ **d.** $-\frac{1}{3}$ **e.** $\frac{1}{3}$

10. Find the volume of the parallelepiped with edge vectors

 $\vec{a} = (-2, 2, 1), \quad \vec{b} = (3, 2, 4) \text{ and } \vec{c} = (1, -2, 3)$

- **a**. -26
- **b**. 26
- **c**. $\sqrt{26}$
- **d**. −46
- **e**. 46

11. If \vec{u} points Down and \vec{v} points North West, in which direction does $\vec{u} \times \vec{v}$ point?

- a. North East
- b. South
- c. South West
- d. South East
- **e**. Up

Work Out: (Points indicated. Part credit possible.) **12.** (12 points) Compute $\int_{0}^{1} \frac{x^{2}}{\sqrt{4-x^{2}}} dx$

13. (15 points) A cone of radius 4 and height 6 and vertex down is filled with water up to height 2. Find the work done to pump the water out the top. Give your answer as a multiple of ρg .

14. (10 points) Start from the Maclaurin series:

a. (6 pt) Find the Maclaurin series for
$$\frac{1}{(1+x)^2}$$
.
HINT: Differentiate both sides of the given series.

 $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$

b. (4 pt) Compute
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{2^{n-1}}$$
.