MATH 152 Spring 2016 COMMON EXAM I - VERSION A

LAST NAME:	_ FIRST NAME:
INSTRUCTOR:	
SECTION NUMBER:	

UIN:

DIRECTIONS:

- 1. The use of a calculator, laptop or cell phone is prohibited.
- 2. TURN OFF cell phones and put them away. If a cell phone is seen during the exam, your exam will be collected and you will receive a zero.
- 3. In Part 1 (Problems 1-15), mark the correct choice on your ScanTron using a No. 2 pencil. The ScanTron will not be returned, therefore for your own records, also record your choices on your exam! Each problem is worth 4 points.
- 4. In Part 2 (Problems 16-20), present your solutions in the space provided. *Show all your work* neatly and concisely and *clearly indicate your final answer*. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.
- 5. Be sure to write your name, section number and version letter of the exam on the ScanTron form.

THE AGGIE CODE OF HONOR

"An Aggie does not lie, cheat or steal, or tolerate those who do."

Signature:

DO NOT WRITE BELOW!

Question	Points Awarded	Points
1-15		45
16		8
17		8
18		9
19		9
20		21
Total		100

PART I: Multiple Choice. 3 points each.

- 1. Find the area bounded by $y = e^x$, $y = e^{-x}$, x = 0 and x = 1.
 - (a) $1 + \frac{1}{e}$ (b) $e + \frac{1}{e} + 2$ (c) $1 + \frac{1}{e} - 2$ (d) $e + \frac{1}{e} - 2$ (e) $e - \frac{1}{e}$
- 2. Find the average value of $f(x) = \sin^2 x$ on the interval $\left[0, \frac{\pi}{8}\right]$.

(a)
$$\frac{1}{2} \left(\frac{\pi}{8} - \frac{\sqrt{2}}{4} \right)$$

(b)
$$\frac{4}{\pi} \left(\frac{\pi}{8} + \frac{\sqrt{2}}{4} \right)$$

(c)
$$\frac{1}{2} \left(\frac{\pi}{8} + \frac{\sqrt{2}}{4} \right)$$

(d)
$$\frac{4}{\pi} \left(\frac{\pi}{8} - \sqrt{2} \right)$$

(e)
$$\frac{4}{\pi} \left(\frac{\pi}{8} - \frac{\sqrt{2}}{4} \right)$$

3.
$$\int \frac{x}{(x+1)^2} dx =$$

(a) $\ln |x+1| + \frac{1}{x+1} + C$
(b) $\ln |x+1| - \frac{1}{x+1} + C$
(c) $\ln |x+1| + \frac{1}{3(x+1)^2} + C$
(d) $\ln |x+1| - \frac{1}{3(x+1)^2} + C$
(e) $\ln |x+1| + \frac{3}{(x+1)^2} + C$

- 4. A spring has a natural length of 2 m. It requires 27 J of work to stretch the spring from 2 m to 5 m. How much work is done in stretching the spring from 3 m to 4 m?
 - (a) $\frac{27}{2}$ J
 - (b) 21 J
 - (c) $\frac{63}{2}$ J
 - (d) 6 J
 - (e) 9 J
- 5. Consider the region bounded by $x = 1 y^2$ and the y axis. Find the volume of the solid obtained by rotating the region about the y axis.
 - (a) $\frac{8\pi}{15}$

 - (b) $\frac{32\pi}{15}$
 - (c) $\frac{16\pi}{15}$
 - (d) $\frac{4\pi}{3}$

 - (e) $\frac{8\pi}{5}$

6.
$$\int \sin^{6} x \cos^{3} x \, dx =$$

(a)
$$-\frac{\sin^{7} x}{7} + \frac{\sin^{9} x}{9} + C$$

(b)
$$\frac{\sin^{7} x}{7} - \frac{\sin^{9} x}{9} + C$$

(c)
$$\frac{\sin^{7} x}{7} + \frac{\sin^{9} x}{9} + C$$

(d)
$$\frac{\sin^{7} x}{6} - \frac{\sin^{9} x}{8} + C$$

(e)
$$6 \sin^{5} x - 8 \sin^{7} x + C$$

- 7. A 10 foot long cable that weighs 60 pounds is hanging from a roof. At the end of this cable, there is a 20 pound box. How much work is done in lifting the entire cable and box to the top of the roof?
 - (a) 400 foot pounds
 - (b) 1100 foot pounds
 - (c) $\frac{2375}{3}$ foot pounds
 - (d) 200 foot pounds
 - (e) 500 foot pounds

8.
$$\int_{0}^{1} xe^{5x} dx =$$
(a)
$$\frac{1+4e^{5}}{25}$$
(b)
$$\frac{1+6e^{5}}{25}$$
(c)
$$\frac{1+5e^{5}}{25}$$
(d)
$$\frac{4}{25}e^{5}$$
(e)
$$\frac{1+5e^{5}}{5}$$

9. For what value of b is the average value of f(x) = 6x - 1 on the interval [0, b] equal to 7?

(a) b = 2(b) $b = \frac{16}{3}$ (c) b = 8(d) $b = \frac{8}{3}$ (e) $b = \frac{4}{3}$

10.
$$\int_{0}^{\pi/4} \tan^{4} x \sec^{4} x \, dx =$$

(a) $\frac{2}{21}$
(b) $\frac{2}{35}$
(c) $-\frac{2}{35}$
(d) $\frac{10}{21}$
(e) $\frac{12}{35}$

11.
$$\int_{0}^{2} |x^{2} - 1| dx =$$
(a) 2
(b) $\frac{2}{3}$
(c) 4
(d) $\frac{4}{3}$
(e) 6

12. Find the area bounded by $y = \sqrt{x}$, y = x, x = 0, x = 4.

- (a) $\frac{8}{3}$
- (b) 3
- (c) $\frac{5}{3}$
- (d) 4
- (e) $\frac{7}{3}$

13.
$$\int_{1}^{e^{3}} \ln x \, dx =$$
(a) $\frac{1}{e^{3}} - 1$
(b) $-\frac{2}{3}$
(c) $2e^{3} - 1$
(d) $\frac{2}{3}$
(e) $8 + 16e^{3}$

14.
$$\int \frac{\sin(3x)}{\sqrt{1 - \cos(3x)}} dx =$$

(a) $2\sqrt{1 - \cos(3x)} + C$
(b) $-2\sqrt{1 - \cos(3x)} + C$
(c) $-\frac{2}{3}\sqrt{1 - \cos(3x)} + C$
(d) $6\sqrt{1 - \cos(3x)} + C$
(e) $\frac{2}{3}\sqrt{1 - \cos(3x)} + C$

- 15. Consider the region bounded by $y = \sqrt[3]{x}$ and $y = x^2$. Find the volume of the solid obtained by rotating the region about the x axis.
 - (a) $\frac{7\pi}{10}$

 - (b) $\frac{\pi}{5}$ (c) $\frac{8\pi}{5}$ (d) $\frac{2\pi}{5}$
 - (e) $\frac{9\pi}{10}$

16. (8 pts) Find $\int e^x \cos(2x) dx$.

17. (8 pts) Find $\int x^2 \tan^2(x^3) dx$.

18. (9 pts) Find the volume of the solid S whose base is the region bounded by $y = 4 - x^2$ and the x axis and whose cross sections perpendicular to the **y** axis are squares.

19. (9 pts) A conical shaped tank is full of water as shown below. If the cone has height 3 m and radius 2 m, find the work done in pumping all of the water out of the cone. Note: the weight density of water is $\rho g = 9800$ Newtons per cubic meter.

20. Consider the region R bounded by $y = e^{x/2}$, $y = \sin x$, x = 0 and $x = \pi$.

a.) (7 pts) Find the area of R.

b.) (7 pts) Set up the integral that gives the volume of the solid obtained by rotating R about the **horizontal** line y = -3. Do not evaluate the integral.

c.) (7 pts) Set up the integral that gives the volume of the solid obtained by rotating R about the vertical line $x = \pi$. Do not evaluate the integral.