MATH 152
 Exam1

Fall 1997
Version A

Part I is multiple choice. There is no partial credit. You may not use a calculator.
Part II is work out. Show all your work. Partial credit will be given. You may use your calculator.

Part I: Multiple Choice (5 points each)
There is no partial credit. You may not use a calculator. You have 1 hour.

1. Compute $\int_{0}^{\pi / 4} \tan x \sec ^{4} x d x$
a. $-\frac{\pi}{2}$
b. $\frac{\pi^{2}}{32}+\frac{\pi^{4}}{1024}$
c. $\frac{1}{4}$
d. $\frac{3}{4}$
e. $\frac{5}{6}$
2. The integral $\int_{0}^{\infty} x^{2} e^{-x^{3}} d x$
a. diverges to $-\infty$
b. converges to $-\frac{1}{3}$
c. converges to 0
d. converges to $\frac{1}{3}$
e. diverges to ∞
3. At time t in days, a lump of Thorium contains $M=200 e^{(-t / 40)} \mathrm{kg}$ of radioactive Thorium-234. In other words, the amount of Thorium-234 drops by a factor of $\frac{1}{e}$ every 40 days. Find the average amount of Thorium-234 present in the first 40 days, i.e. between $t=0$ and $t=40$.
a. $8000(e-1)$
b. $200\left(1-\frac{1}{e}\right)$
c. $200(e-1)$
d. $4000\left(1+\frac{1}{e}\right)$
e. $100\left(1+\frac{1}{e}\right)$
4. Find the area between the parabolas $y=16-x^{2}$ and $y=x^{2}-4 x$.
a. 38
b. 72
c. 96
d. 102
e. 128
5. Compute $\int_{0}^{\pi} \sin x e^{\cos x} d x$
a. $e^{-1}-e$
b. $-e^{-1}$
c. $e^{-1}-1$
d. $1-\frac{1}{e}$
e. $e-\frac{1}{e}$
6. The area below the parabola $y=x(4-x)$ and above the x-axis is rotated about the x-axis. The volume of the solid swept out is given by
a. $\int_{0}^{4} 2 \pi y \sqrt{4-y} d y$
b. $\int_{0}^{4} 2 \pi x^{2}(4-x) d x$
c. $2 \int_{0}^{2} 2 \pi x^{2}(4-x) d x$
d. $\int_{0}^{4} \pi x^{2}(4-x)^{2} d x$
e. $2 \int_{0}^{2} 2 \pi y \sqrt{4-y} d y$
7. The area below the parabola $y=x(4-x)$ and above the x-axis is rotated about the y-axis. Find the volume of the solid swept out.
a. $\frac{128}{3} \pi$
b. $\frac{64}{3} \pi$
c. $\frac{512}{15} \pi$
d. $\frac{496}{15} \pi$
e. $\frac{108}{5} \pi$
8. Identify which term in the following partial fraction expansion does NOT have the correct form:

$$
\frac{2 x+5}{(x-1)^{2}(x+2)\left(x^{2}+7\right)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+2}+\frac{D}{x^{2}+7}
$$

where A, B, C and D are constants.
a. $\frac{A}{x-1}$
b. $\frac{B}{(x-1)^{2}}$
c. $\frac{C}{x+2}$
d. $\frac{D}{x^{2}+7}$
e. None, they all have the correct form.
9. The integral $\int_{-2}^{\sqrt{2}}\left(\sqrt{4-x^{2}}-x\right) d x$ gives the area of which of the following regions?
a.

b.

c.

d.

e.

10. Compute $\int_{0}^{1} x^{2} e^{x} d x$
a. e
b. $e-1$
c. $e-2$
d. $2 e-1$
e. $2 e-2$

Part II: Work Out (10 points each)

Show all your work. Partial credit will be given.
You may use your calculator but only after 1 hour.
11. Compute $\int_{-2}^{2} \sqrt{4-x^{2}} d x$
12. Compute $\int \frac{4}{(x-1)^{2}(x+1)} d x$
13. Compute $\int x^{5} \sin \left(x^{3}-1\right) d x$
14. It is easy to compute $\int_{0}^{\pi} \sin x d x=2$ exactly. However, find the approximate value for $\int_{0}^{\pi} \sin x d x$ using the midpoint rule in a Riemann sum with 4 intervals. Use your calculator to give a decimal value.
15. The base of a solid is the triangle with corners $(0,0),(0,1)$ and $(1,0)$. The cross-sections perpendicular to the x-axis are semicircles. Compute the volume of the solid.

