MATH 152 Exam1 Fall 1997 Version A

Student (Print)	. <u></u>			1-10
	Last,	First	Middle	
Student (Sign)				11
				12
Student ID				13
Instructor				14
Section				TOTAL

Part I is multiple choice. There is no partial credit. You may not use a calculator.

Part II is work out. Show all your work. Partial credit will be given. You may use your calculator.

Part I: Multiple Choice (5 points each)

There is no partial credit. You may not use a calculator. You have 1 hour.

- 1. Compute $\int_{0}^{\pi/4} \tan x \sec^{4} x \, dx$ a. $-\frac{\pi}{2}$ b. $\frac{\pi^{2}}{32} + \frac{\pi^{4}}{1024}$ c. $\frac{1}{4}$ d. $\frac{3}{4}$ e. $\frac{5}{6}$ 2. The integral $\int_{0}^{\infty} x^{2} e^{-x^{3}} dx$ a. diverges to $-\infty$ b. converges to $-\frac{1}{3}$ c. converges to $\frac{1}{3}$ e. diverges to ∞
- **3**. At time *t* in days, a lump of Thorium contains $M = 200e^{(-t/40)}$ kg of radioactive Thorium-234. In other words, the amount of Thorium-234 drops by a factor of $\frac{1}{e}$ every 40 days. Find the average amount of Thorium-234 present in the first 40 days, i.e. between t = 0 and t = 40.
 - **a**. 8000(e-1)
 - **b.** $200\left(1-\frac{1}{e}\right)$
 - **c**. 200(e-1)
 - **d.** $4000\left(1+\frac{1}{e}\right)$
 - **e**. $100\left(1+\frac{1}{e}\right)$
- **4**. Find the area between the parabolas $y = 16 x^2$ and $y = x^2 4x$.
 - **a**. 38
 - **b**. 72
 - **c**. 96
 - **d**. 102
 - **e**. 128

- 5. Compute $\int_{0}^{\pi} \sin x e^{\cos x} dx$
 - **a.** $e^{-1} e$ **b.** $-e^{-1}$ **c.** $e^{-1} - 1$ **d.** $1 - \frac{1}{e}$ **e.** $e - \frac{1}{e}$
- 6. The area below the parabola y = x(4 x) and above the *x*-axis is rotated about the *x*-axis. The volume of the solid swept out is given by
 - **a.** $\int_{0}^{4} 2\pi y \sqrt{4-y} \, dy$ **b.** $\int_{0}^{4} 2\pi x^{2} (4-x) \, dx$ **c.** $2 \int_{0}^{2} 2\pi x^{2} (4-x) \, dx$ **d.** $\int_{0}^{4} \pi x^{2} (4-x)^{2} \, dx$ **e.** $2 \int_{0}^{2} 2\pi y \sqrt{4-y} \, dy$
- 7. The area below the parabola y = x(4 x) and above the *x*-axis is rotated about the *y*-axis. Find the volume of the solid swept out.
 - **a**. $\frac{128}{3}\pi$ **b**. $\frac{64}{3}\pi$ **c** $\frac{512}{3}\pi$
 - **c**. $\frac{512}{15}\pi$ **d**. $\frac{496}{15}\pi$
 - **e**. $\frac{108}{5}\pi$
- 8. Identify which term in the following partial fraction expansion does NOT have the correct form:

$$\frac{2x+5}{(x-1)^2(x+2)(x^2+7)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+2} + \frac{D}{x^2+7}$$

where A, B, C and D are constants.

a.
$$\frac{A}{x-1}$$

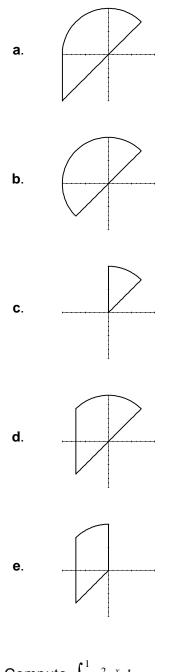
b.
$$\frac{B}{(x-1)^2}$$

c.
$$\frac{C}{x+2}$$

d.
$$\frac{D}{x^2+7}$$

e. None, they all have the correct form.

9. The integral $\int_{-2}^{\sqrt{2}} (\sqrt{4-x^2} - x) dx$ gives the area of which of the following regions?



10. Compute $\int_{0}^{1} x^{2} e^{x} dx$ **a.** e **b.** e - 1 **c.** e - 2**d.** 2e - 1

Part II: Work Out (10 points each)

Show all your work. Partial credit will be given. You may use your calculator but only after 1 hour.

11. Compute $\int_{-2}^{2} \sqrt{4-x^2} \, dx$

12. Compute $\int \frac{4}{(x-1)^2(x+1)} dx$

13. Compute $\int x^5 \sin(x^3 - 1) \, dx$

14. It is easy to compute $\int_0^{\pi} \sin x \, dx = 2$ exactly. However, find the approximate value for $\int_0^{\pi} \sin x \, dx$ using the midpoint rule in a Riemann sum with 4 intervals. Use your calculator to give a decimal value.

15. The base of a solid is the triangle with corners (0,0), (0,1) and (1,0). The cross-sections perpendicular to the *x*-axis are semicircles. Compute the volume of the solid.

