MATH 152
 Exam 3
 Fall 1997
 Version A

Student (Print)	Last,	First	Middle	1-11 \|	
Student (Sign)					
				12	
Student ID				13	
Instructor				14	
				15	
Section				TOTAL	

Part I is multiple choice. There is no partial credit. You may not use a calculator.
Part II is work out. Show all your work. Partial credit will be given. You may use your calculator.

Part I: Multiple Choice (5 points each)
There is no partial credit. You may not use a calculator. You have 1 hour.

1. If $f(x, y, z)=x^{2} y \sin z$, then $\frac{\partial^{2} f}{\partial x \partial z}=$
a. $\frac{x y}{z} \sin z$
b. $x^{2} \sin z$
c. $2 x y \sin z+x^{2} y \cos z$
d. $2 x^{3} y^{2} \sin z \cos z$
e. $2 x y \cos z$
2. Which pair of vectors is NOT perpendicular?
a. $\boldsymbol{a}=\langle 1,2,3\rangle$ and $\boldsymbol{b}=\langle 3,0,-1\rangle$
b. $\boldsymbol{p}=2 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$ and $\boldsymbol{q}=-\mathbf{i}+\mathbf{j}+\mathbf{k}$
c. $\boldsymbol{A}=-3 \mathbf{i}+2 \mathbf{j}$ and $\boldsymbol{B}=4 \mathbf{i}+6 \mathbf{j}$
d. $\boldsymbol{F}=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ and $\boldsymbol{G}=\mathbf{i}+\mathbf{j}+\mathbf{k}$
e. $\boldsymbol{u}=\langle 3,4\rangle$ and $\boldsymbol{v}=\langle 8,-6\rangle$
3. A parallelepiped has adjacent edges $\boldsymbol{u}=\langle 2,-1,4\rangle, \boldsymbol{v}=\langle 1,-3,0\rangle$ and $\boldsymbol{w}=\langle 3,1,-2\rangle$. Find its volume.
a. $\langle 12,4,-8\rangle$
b. -12
c. 12
d. 50
e. 54
4. The radius of a cylindrical tin can is 5 cm and the height is 10 cm . The sides are .01 cm thick while the top and bottom are .02 cm thick each. Estimate the volume of metal used to make the can.
a. $.004 \pi \mathrm{~cm}^{3}$
b. $.01 \pi \mathrm{~cm}^{3}$
c. $.02 \pi \mathrm{~cm}^{3}$
d. $2 \pi \mathrm{~cm}^{3}$
e. $250 \pi \mathrm{~cm}^{3}$
5. Which line is perpendicular to the plane $3 x+4 y+5 z=6$?
a. $\frac{x-3}{2}=\frac{y-4}{3}=\frac{z-5}{4}$
b. $x=3+2 t, y=4+3 t, z=5+4 t$
c. $x=2+3 t, y=3+4 t, z=4+5 t$
d. $\frac{x-2}{20}=\frac{y-3}{15}=\frac{z-4}{12}$
e. $x=2+20 t, y=3+15 t, z=4+12 t$
6. Which of the following is the graph of $f=y^{2}-x^{2}$?
a.

d.

b.

e.

c.

7. Find the intersection of the line $x=3+2 t, y=2+t, z=1-t$ and the plane $x-y+2 z=4$.
a. $(3,1,1)$
b. $(1,1,2)$
c. $(2,-2,0)$
d. $(-1,1,3)$
e. $(0,2,3)$
8. For which function are the level curves (or contour plot) shown at the right?

a. $f=x^{2}+y^{2}-2 x$
b. $f=\cos x \cos y$
c. $f=x y$
d. $f=(x+y)^{2}$
e. $f=(x-y)^{2}$
9. An object moves in the $x y$-plane along the curve $y=x^{2}$ from $(-2,4)$ to $(2,4)$. In what direction does the (principal) normal \boldsymbol{N} point when the object is at $(0,0)$?
a. j
b. $\mathbf{i}+\mathbf{j}$
c. $\mathbf{j}-\mathbf{i}$
d. $-\mathbf{j}$
e. i
10. A triangle has vertices $A=(1,1,-1), B=(2,0,-1)$ and $C=(1,-1,1)$. Find a vector perpendicular to the plane of the triangle.
a. $\langle 1,1,1\rangle$
b. $\langle-2,2,2\rangle$
c. $\langle 1,-1,1\rangle$
d. $\langle 2,2,-2\rangle$
e. $\langle 2,2,0\rangle$
11. A wagon is pulled a distance of 100 m along a horizontal path by a constant force of 50 N exerted along the handle which is at 30° above the horizontal. How much work is done?
a. 5000 J
b. 2500 J
c. $2500 \sqrt{3} \mathrm{~J}$
d. $\frac{10000}{\sqrt{3}} \mathrm{~J}$
e. 10000 J

Part II: Work Out

Show all your work. Partial credit will be given.
You may use your calculator but only after 1 hour.
12. (12 points) Consider the curve $\boldsymbol{r}(t)=(t, \sin (2 t), \cos (2 t))$. Compute each of the following:
a. velocity

$$
\boldsymbol{v}=
$$

b. speed

$$
|\boldsymbol{v}|=
$$

c. arclength between $t=1$ and $t=3$

$$
L=
$$

d. acceleration

$$
\boldsymbol{a}=
$$

\qquad
e. unit tangent

$$
\boldsymbol{T}=
$$

f. curvature

$$
\kappa=
$$

13. (11 points) Find the plane tangent to the hyperbolic paraboloid $z=2 x^{2}-y^{2}$ at the point ($1,2,-2$). Then identify its z-intercept.
14. (11 points) A particle has initial position $\mathbf{r}(t)=\langle 0,0\rangle$ and initial velocity $\mathbf{v}(t)=\langle 1,-1\rangle$. If its acceleration is $\mathbf{a}(t)=\left\langle 4 \cos (2 t), 12 t^{2}\right\rangle$, find its position at $t=\pi$.
15. (11 points) Find the line of intersection of the planes $x+y+z=3$ and $3 x+y-z=1$.
