## Part I: Multiple Choice (5 points each)

There is no partial credit. You may not use a calculator.

1. Find the area of the region bounded by the curves

$$
x=0, \quad x=1+y^{2}, \quad y=1, \quad y=3 .
$$

(A) 11
[Draw a sketch!]
(B) $\frac{40}{3}$
$A=\int_{1}^{3}\left(1+y^{2}\right) d y$
(C) 12
(D) $\frac{32}{3} \Leftarrow$ correct
$=\left[y+\frac{y^{3}}{3}\right]_{1}^{3}$
$=(3+9)-\left(1+\frac{1}{3}\right)$
(E) 10
$=11-\frac{1}{3}$

$$
=\frac{32}{3} .
$$

2. Find the average value of the function $f(x)=e^{-3 x}$ on the interval $[0,2]$.
(A) $\frac{1}{6}\left(1-e^{-6}\right) \Leftarrow$ correct
(B) $\frac{3}{2}\left(1+e^{6}\right)$

$$
\text { (C) } 0
$$

$$
\begin{aligned}
f_{\text {ave }} & =\frac{1}{2-0} \int_{0}^{2} e^{-3 x} d x \\
& =\left.\frac{1}{2} \frac{e^{-3 x}}{-3}\right|_{0} ^{2} \\
& =-\frac{1}{6}\left[e^{-6}-e^{0}\right] \\
& =\frac{1}{6}-\frac{1}{6} e^{-6}
\end{aligned}
$$

(D) $\frac{1}{3}\left(1-e^{-6}\right)$
(E) $\frac{1}{2}\left(e^{-6}-1\right)$

## Solutions to Test 1

Page 2 Form A 152-01a-1
3. Calculate $\int_{0}^{\pi / 4} \sin ^{2} x d x$.
(A) $\frac{\pi}{8}-\frac{1}{2}$
(B) $\frac{\pi}{4}-\frac{1}{2}$
(C) $\frac{\pi}{8}-\frac{1}{4} \Leftarrow$ correct
(D) $\frac{\pi}{8}+\frac{1}{2}$
(E) $\frac{\pi}{4}+\frac{1}{4}$

$$
\begin{aligned}
\int_{0}^{\pi / 4} \sin ^{2} x d x & =\int_{0}^{\pi / 4} \frac{1-\cos 2 x}{2} d x \\
& =\frac{1}{2}\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\pi / 4} \\
& =\frac{1}{2}\left(\frac{\pi}{4}-\frac{\sin (\pi / 2)}{2}\right) \\
& =\frac{\pi}{8}-\frac{1}{4}
\end{aligned}
$$

4. An object is moved along the $x$-axis by a force of magnitude $F(x)=\frac{1}{1+x^{2}}$. How much work is done as the object moves from $x=0$ to $x=1 ?$
(A) $\pi$
(B) $\frac{\pi}{16}$
(C) $\ln 2$
(D) $\frac{\pi}{4} \Leftarrow$ correct

$$
\begin{aligned}
W & =\int_{0}^{1} \frac{1}{1+x^{2}} d x \\
& =\left.\arctan x\right|_{0} ^{1} \\
& =\arctan 1 \\
& =\frac{\pi}{4} .
\end{aligned}
$$

(E) $\ln 8-\ln 2$
5. The area bounded by the curves $x^{2}=y$ and $x+y=2$ is
(A) 5
[Draw a sketch!]
(B) $\frac{3}{2}$
Find the intersections: $x^{2}=y=2-x$.
(C) $\frac{9}{2} \Leftarrow$ correct

$$
\begin{aligned}
0= & x^{2}+x-2=(x-1)(x+2) . \\
A= & \int_{-2}^{1}\left((2-x)-x^{2}\right) d x \\
= & {\left[2 x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-2}^{1} } \\
= & \left(2-\frac{1}{2}-\frac{1}{3}\right)-\left(-4-2+\frac{8}{3}\right) \\
= & 8-\frac{1}{2}-\frac{9}{3}=\frac{9}{2}
\end{aligned}
$$

(D) $\pi$
(E) $\frac{\pi}{2}$
6. A trigonometric substitution converts the integral $\int \frac{x}{\left(3-2 x-x^{2}\right)^{1 / 2}} d x$ to
(A) $\int(3 \cos \theta+2) d \theta$

First complete the square:
(B) $\int(2 \sin \theta-1) d \theta \Leftarrow$ correct
(C) $\int\left(2 \sin ^{2} \theta-\cos \theta\right) d \theta$
(D) $\int(2 \tan \theta-1) d \theta$

$$
\begin{aligned}
-\left(x^{2}+2 x-3\right) & =-\left(x^{2}+2 x+1-4\right) \\
& =-\left((x+1)^{2}-4\right)
\end{aligned}
$$

In $\int \frac{x}{\sqrt{4-(x+1)^{2}}} d x$ let $x+1=2 \sin \theta$.
(E) $\int 2 \tan ^{-1} \theta d \theta$

$$
\begin{gathered}
d x=2 \cos \theta d \theta, \quad x=2 \sin \theta-1 \\
\int \frac{2 \sin \theta-1}{\sqrt{4-4 \sin ^{2} \theta}} 2 \cos \theta d \theta=\int(2 \sin \theta-1) d \theta
\end{gathered}
$$

7. Suppose that $f(0)=3$ and $f(2)=4$ and $\int_{0}^{2} x^{2} f(x) d x=5$. What is $\int_{0}^{2} x^{3} f^{\prime}(x) d x$ ? (Hint: Use integration by parts. Assume that $f(x)$ is a differentiable function and that $f^{\prime}(x)$ is continuous.)
(A) 60
(B) 47
(C) 33
(D) 27
(E) $17 \Leftarrow$ correct

Let $u=x^{3}, d v=f^{\prime}(x) d x$.

$$
d u=3 x^{2} d x, \quad v=f(x)
$$

The integral becomes

$$
\begin{aligned}
& {\left[x^{3} f(x)\right]_{0}^{2}-3 \int_{0}^{2} x^{2} f(x) d x } \\
= & 8 f(2)-0 f(0)-3 \int_{0}^{2} x^{2} f(x) d x \\
= & 8 \times 4-3 \times 5=17
\end{aligned}
$$

8. The region bounded by the curves $\quad x=0, \quad x=1+y, \quad y=0, \quad y=2 \quad$ is rotated about the $y$-axis. Find the volume of the resulting solid.
(A) $\frac{26 \pi}{3} \Leftarrow$ correct
[Draw a sketch!]
(B) $\frac{80 \pi}{3}$
(C) $\frac{22 \pi}{3}$
(D) $\frac{32 \pi}{3}$
(E) $\frac{62 \pi}{3}$

The disk at $y$ has radius $r=x=1+y$.

$$
\begin{aligned}
V & =\int_{0}^{2} \pi r^{2} d y \\
& =\pi \int_{0}^{2}\left(1+2 y+y^{2}\right) d y \\
& =\pi\left[y+y^{2}+\frac{y^{3}}{3}\right]_{0}^{2} \\
& =\pi\left(2+4+\frac{8}{3}\right)=\frac{26 \pi}{3}
\end{aligned}
$$

## Solutions to Test 1

Page 5 Form A 152-01a-1
9. Calculate $\int_{1}^{e} \frac{\ln x}{x^{2}} d x$.
(A) $e^{2}-1$
(B) 0
(C) 1
(D) $1-\frac{2}{e} \Leftarrow$ correct
(E) $2-e^{2}$

Let $u=\ln x, d v=\frac{1}{x^{2}} d x$.

$$
d u=\frac{1}{x} d x, \quad v=-\frac{1}{x} .
$$

The integral becomes

$$
\begin{aligned}
-\frac{1}{x} \ln x+\int \frac{1}{x^{2}} d x & =\left[-\frac{1}{x} \ln x-\frac{1}{x}\right]_{1}^{e} \\
& =\left(-\frac{1}{e}-\frac{1}{e}\right)-(-0-1) \\
& =1-\frac{2}{e}
\end{aligned}
$$

10. The base of a solid is the triangle with vertices $(0,0),(1,1)$, and $(1,-1)$. The cross sections perpendicular to the $x$-axis are squares. Find the volume.
(A) $\frac{1}{3}$
[Draw a sketch of the base.]
(B) $\frac{2}{3}$
(C) $\frac{4}{3} \Leftarrow$ correct
(D) $\frac{16}{3}$
(E) $\frac{32}{3}$

The top and bottom boundaries of the base are

$$
y=x \quad \text { and } \quad y=-x
$$

So the square at $x$ has side length $s=2 y=2 x$.

$$
\begin{aligned}
V & =\int_{0}^{1} s^{2} d x \\
& =\int_{0}^{1} 4 x^{2} d x \\
& =\left.4 \frac{x^{3}}{3}\right|_{0} ^{1} \\
& =\frac{4}{3} .
\end{aligned}
$$

## Part II: Write Out (10 points each)

Show all your work. Appropriate partial credit will be given. You may not use a calculator.
11. Evaluate $\int x^{2} \sin (4 x) d x$.

Method 1: Let $u=x^{2}, \quad d v=\sin 4 x d x ; \quad d u=2 x d x, \quad v=-\frac{\cos 4 x}{4}$.
This converts the integral to

$$
-\frac{x^{2}}{4} \cos 4 x+\frac{1}{2} \int x \cos 4 x d x
$$

Integrate by parts again: $u=x, \quad d v=\cos 4 x d x ; \quad d u=d x, \quad v=\frac{\sin 4 x}{4}$.
The integral becomes

$$
\begin{aligned}
& -\frac{x^{2}}{4} \cos 4 x+\frac{1}{2}\left[\frac{x}{4} \sin 4 x-\frac{x}{4} \int \sin 4 x d x\right] \\
= & -\frac{x^{2}}{4} \cos 4 x+\frac{1}{2}\left[\frac{x}{4} \sin 4 x-\frac{1}{4}\left(-\frac{\cos 4 x}{4}\right)\right]+C \\
= & -\frac{x^{2}}{4} \cos 4 x+\frac{x}{8} \sin 4 x+\frac{1}{32} \cos 4 x+C .
\end{aligned}
$$

Method 2: First make the substitution $y=4 x$ to simplify the arithmetic.

$$
\begin{gathered}
d x=\frac{1}{4} d y, \quad x^{2}=\frac{1}{16} y^{2} \\
\int x^{2} \sin 4 x d x=\frac{1}{64} \int y^{2} \sin y d y
\end{gathered}
$$

Now let $u=y^{2}, \quad d v=\sin y d y ; \quad d u=2 y d y, \quad v=-\cos y$. This converts the integral $\int y^{2} \sin y d y$ to $-y^{2} \cos y+2 \int y \cos y d y$.
Integrate by parts again: $u=y, d v=\cos y d y ; \quad d u=d y, v=\sin y$. We get

$$
-y^{2} \cos y+2\left[y \sin y-\int \sin y d y\right]=-y^{2} \cos y+2 y \sin y+2 \cos y+C
$$

So the original integral is

$$
\begin{aligned}
& \frac{1}{64}\left[-(4 x)^{2} \cos 4 x+2(4 x) \sin 4 x+2 \cos 4 x+C\right] \\
= & -\frac{x^{2}}{4} \cos 4 x+\frac{x}{8} \sin 4 x+\frac{1}{32} \cos 4 x+C .
\end{aligned}
$$

12. Evaluate $\int \frac{\sin ^{3} x}{\cos ^{4} x} d x$.

Let $u \cos x$, so that $d u=-\sin x d x$ and $\sin ^{2} x=1-u^{2}$. The integral is then

$$
\begin{aligned}
-\int \frac{1-u^{2}}{u^{4}} d u & =-\int \frac{1}{u^{4}} d u+\int \frac{1}{u^{2}} d u \\
& =\left[\frac{1}{3} \frac{1}{u^{3}}-\frac{1}{u}\right]+C \\
& =\frac{1}{3 \cos ^{3} x}-\frac{1}{\cos x}+C
\end{aligned}
$$

13. Set up (but DO NOT EVALUATE) the integrals to compute the volumes of the indicated solids of revolution. CLEARLY INDICATE IN EACH CASE WHETHER YOU ARE WRITING A CYLINDER-SHELL FORMULA OR A DISKS/WASHERS FORMULA.
(a) Revolve the region bounded by $\quad y=\sin x, \quad y=0, \quad x=0, \quad x=\pi \quad$ about the line $x=0$ (the $y$-axis).
[Draw a sketch!]
Cylinder method (best): $V=\int 2 \pi r h d x=2 \pi \int_{0}^{\pi} x \sin x d x$
Washer method (ugly): $V=\int_{0}^{1} \pi\left[(\pi-\arcsin y)^{2}-(\arcsin y)^{2}\right] d y$
(b) Revolve the region bounded by $\quad y=\sin x, \quad y=0, \quad x=0, \quad x=\pi \quad$ about the line $y=2$.
[Draw a sketch!]
Washer method (best):

$$
V=\int\left(\pi r_{\text {outer }}^{2}-\pi r_{\text {inner }}^{2}\right) d x=\pi \int_{0}^{\pi}\left[4-(2-\sin x)^{2}\right] d x=\pi \int_{0}^{\pi}\left(4 \sin x-\sin ^{2} x\right) d x
$$

Cylinder method (ugly): $V=\int_{0}^{1} 2 \pi(2-y)[(\pi-\arcsin y)-\arcsin y] d y$
14. Evaluate $\int \frac{1}{\sqrt{x^{2}-9}} d x$.

Let $x=3 \sec \theta$, so that $d x=3 \sec \theta \tan \theta$ and $x^{2}-9=9 \tan ^{2} \theta$. The integral becomes

$$
\begin{aligned}
\int \frac{3 \sec \theta \tan \theta}{3 \tan \theta} d \theta & =\int \sec \theta d \theta \\
& =\ln |\sec \theta+\tan \theta|+C \\
& =\ln \left|\frac{x}{3}+\frac{\sqrt{x^{2}-9}}{3}\right|+C
\end{aligned}
$$

[Sketch a right triangle with hypotenuse $x$, adjacent side 3 , and therefore opposite side $\sqrt{x^{2}-9}$.]
15. Do ONE of the following [(A) or (B)]. CIRCLE THE LETTER of the one you want graded!
(A) A 10-kilogram object at ground level is attached by a cable with a mass density of $\frac{1}{4} \mathrm{~kg} / \mathrm{m}$ to a winch at the top of a 40 -meter high building. How much work (in joules) is required to crank this load up to the roof? (The acceleration of gravity in MKS units is $g=9.8$.)

The work done in lifting the object itself is just the force times the distance:

$$
W_{1}=10 g \times 40=400 g
$$

The work done in lifting the piece of cable of length $d y$ that starts at distance $y$ below the roof is

$$
W_{2}=\int_{0}^{40} \frac{1}{4} g y d y=\left.\frac{g}{4} \frac{y^{2}}{2}\right|_{0} ^{40}=\frac{g}{8} 40 \times 40=200 g
$$

So the total work is $W=600 g=5880 \mathrm{~J}$.
(B) A tank (trough) 8 feet long has cross sections that are isosceles triangles (with base side on top) whose base and altitude are both 3 feet. If the tank is initially full of water, how much work is required to pump all the water out over the top? (Water weighs 62.5 pounds per cubic foot.)

$W=\int D d F$, where $D=3-y$ is the depth of the layer of water at $y$ and $d F=\rho g d V=$ $(\rho g) \times 8 w d y$ is the gravitational force (weight) on that layer. Here $w$ is the width of the trough at height $y$, and $\rho g=62.5$ is the weight density. By similar triangles,

$$
\frac{w}{y}=\frac{3}{3},
$$

it is clear that $w=y$. Thus

$$
\begin{aligned}
W & \left.=\int_{0}^{3} 8 y(3-y)(\rho g) d y=8(\rho g) \int_{0}^{3} 3 y-y^{2}\right) d y \\
& =8(\rho g)\left[\frac{3 y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{3}=8(\rho g)\left(\frac{27}{2}-9\right)=\frac{72}{2}(\rho g) \\
& =36 \times 62.5=2250 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

