Part I: Multiple Choice (5 points each)

There is no partial credit. You may not use a calculator.

1. A cube, with edges of length 2 meters, sits on the flat bottom of a pool of water that is 5 meters deep. Find the force due to water pressure on any one vertical side of the cube. (Let ρ be the mass density of water and g be the acceleration of gravity; $\rho=1000$ $\mathrm{kg} / \mathrm{m}^{3}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, but you don't need to use that.)
(A) $20 \rho g$
(B) $50 \rho g$
(C) $4 \rho g$
(D) $12 \rho g$
(E) $16 \rho g \Leftarrow$ correct

$$
\begin{aligned}
F & =\int_{\text {bottom }}^{\text {top }} \rho g(\text { depth })(\text { width }) d(\text { height }) \\
& =\int_{0}^{2} \rho g(5-y) 2 d y \\
& =2 \rho g\left[5 y-\frac{y^{2}}{2}\right]_{0}^{2} \\
& =2 \rho g(10-2)=16 \rho g
\end{aligned}
$$

2. Find the force due to water pressure on the top surface of the cube in the previous problem.
(A) $20 \rho g$
(B) $50 \rho g$

By definition of pressure,
(C) $4 \rho g$
(D) $12 \rho g \Leftarrow$ correct

$$
\begin{aligned}
F & =\text { force } \cdot \text { area } \\
& =\rho g \cdot 3 \cdot 4 \\
& =12 \rho g .
\end{aligned}
$$

(E) $16 \rho g$

Solutions to Test 2

Page 2 Form B 152-01a-2
3. The improper integral $\int_{0}^{4} \frac{d x}{\sqrt{x}}$
(A) converges to the value $4 \Leftarrow$ correct
(B) diverges, by comparison with the integral $\left.\int_{0}^{4} \frac{d x}{x^{2}} \quad \lim _{T \rightarrow 0^{+}} 2 \sqrt{x}\right|_{T} ^{4}=4$.
(C) converges to the value 3
(D) converges to the value $\frac{1}{2}$
(E) converges, by comparison with the integral $\int_{0}^{4} \frac{d x}{x^{2}}$
4. Set up the integral for the arc length of the curve $y=\frac{x^{3}}{6}$ between $x=1$ and $x=2$.
(A) $\frac{\pi}{36} \int_{1}^{2} x^{6} d x$
(B) $\int_{1}^{2} \sqrt{1+\frac{x^{4}}{4}} d x \Leftarrow$ correct
(C) $\int_{1}^{2} \sqrt{1+\frac{x^{2}}{2}} d x$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{3 x^{2}}{6}=\frac{x^{2}}{2} . \\
L= & \int_{1}^{2} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
= & \int_{1}^{2} \sqrt{1+\frac{x^{4}}{4}} d x .
\end{aligned}
$$

(D) $\frac{\pi}{3} \int_{1}^{2} x^{4} d x$
(E) $\int_{1}^{2} \sqrt{1+\frac{x^{6}}{36}} d x$

Solutions to Test 2

Page 3 Form B 152-01a-2
5. The improper integral $\int_{e}^{\infty} \frac{d x}{x \ln x} \quad$ [Hint: Let $u=\ln x$.]
(A) converges to the value -1
(B) converges to the value 0

$$
\begin{aligned}
& d u=\frac{1}{x} d x \\
I & =\int_{1}^{\infty} \frac{d u}{u} \\
& =\left.\lim _{T \rightarrow \infty} \ln u\right|_{1} ^{T} \\
& =\infty
\end{aligned}
$$

(C) converges, by comparison with the integral $\int_{e}^{\infty} \frac{d x}{x}$
(D) converges to the value $-e$
(E) diverges to $+\infty \Leftarrow$ correct
6. Set up the integral for the arc length of the parametrized curve segment

$$
x(t)=\sin 2 t, \quad y(t)=3 \cos 2 t, \quad 0 \leq t \leq \frac{\pi}{4} .
$$

(A) $\int_{0}^{\pi / 4}\left(1+\sqrt{4 \cos ^{2} 2 t+36 \sin ^{2} 2 t}\right) d t$
(B) $\int_{0}^{\pi / 4} \sqrt{1+2 \cos 2 t+9 \sin 2 t} d t$

$$
\frac{d x}{d t}=2 \cos 2 t
$$ $\frac{d y}{d t}=-6 \sin 2 t$.

(C) $\int_{0}^{\pi / 4} \sqrt{4 \cos ^{2} 2 t+36 \sin ^{2} 2 t} d t \Leftarrow$ correct
(D) $\int_{0}^{\pi / 4} \sqrt{1+\sin ^{2} 2 t+9 \cos ^{2} 2 t} d t$
$L=\int_{0}^{\frac{\pi}{4}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
$=$ response (C).
(E) $\int_{0}^{\pi / 4} \sqrt{4 \sin ^{2} 2 t+6 \cos ^{2} 2 t} d t$

Solutions to Test 2

7. To find the partial-fraction decomposition of $\frac{3 x^{4}+9 x^{3}+9 x^{2}+x+8}{\left(x^{2}+4 x+5\right)(x-1)^{2}(x+2)}$ you would start from the form
(A) $\frac{A}{x+2}+\frac{B}{(x-1)^{2}}+\frac{C x+D}{x^{2}+4 x+5}+\frac{E x+F}{\left(x^{2}+4 x+5\right)^{2}}$
(B) $\frac{A}{x+2}+\frac{B}{x-1}+\frac{C x+D}{x^{2}+4 x+5}$
(C) $\frac{A}{x+2}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)}+\frac{D x+E}{x^{2}+4 x+5} \Leftarrow$ correct
(D) $\frac{A}{x+2}+\frac{B}{(x-1)^{2}}+\frac{C}{x^{2}+4 x+5}$
(E) $3 x^{2}+\frac{A}{x+2}+\frac{B}{(x-1)^{2}}+\frac{C x+D}{x^{2}+4 x+5}$
8. An integrating factor for the differential equation $\frac{d y}{d x}+\frac{3 y}{x}=\cos x$ is
(A) $e^{\sin x}$
(B) $x^{3} \Leftarrow$ correct

$$
\begin{aligned}
& P(x)=\frac{3}{x} . \\
& I=e^{\int P d x} \\
& \quad=e^{3 \ln x} \\
& \quad=x^{3} .
\end{aligned}
$$

(C) $3 x$
(D) $3 \ln x$
(E) $e^{3 / x}$

Solutions to Test 2

Page 5 Form B 152-01a-2
9. The improper integral $\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{3 / 2}} d x$
(A) converges, by comparison with the integral

$$
\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x \Leftarrow \text { correct }
$$

(B) diverges, by comparison with the integral

$$
\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x
$$

(C) diverges, by comparison with the integral

$$
\int_{1}^{\infty} \sin ^{2} x d x
$$

Because $\sin ^{2} x \leq 1$, we can compare the integral with $\int_{1}^{\infty} x^{-3 / 2} d x$ provided that the latter converges.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x & =\left.\frac{2 x^{-1 / 2}}{-1}\right|_{1} ^{\infty} \\
& =0+2<\infty
\end{aligned}
$$

(D) converges to the value 0
(E) converges to the value $-\pi$
10. Suppose that $y(t)$ is the solution to the initial value problem $\frac{d y}{d t}=y^{2}, \quad y(0)=\frac{1}{2}$. What is $y(5) ?$
(A) $-\frac{1}{3} \Leftarrow$ correct

Separable equation:
(B) $-\frac{1}{5}$

$$
\begin{gathered}
\int \frac{d y}{y^{2}}=\int d t \Rightarrow-\frac{1}{y}=t+C \\
-\frac{1}{1 / 2}=0+C \Rightarrow C=-2 \\
\frac{1}{y}=2-t \Rightarrow y=\frac{1}{2-t} \\
y(5)=\frac{1}{2-5}=-\frac{1}{3}
\end{gathered}
$$

Part II: Write Out (10 points each)

Show all your work. Appropriate partial credit will be given. You may not use a calculator.
11. The curve $y=\sqrt{x}$, between $x=0$ and $x=4$, is rotated about the x-axis. Find the surface area of the resulting surface.

$$
\begin{aligned}
A & =\int_{0}^{4} 2 \pi \sqrt{x} \sqrt{1+\left(\frac{1}{2 \sqrt{x}}\right)^{2}} d x=2 \pi \int_{0}^{4} \sqrt{x+\frac{1}{4}} d x \\
& =\left.2 \pi \frac{2}{3}\left(x+\frac{1}{4}\right)^{3 / 2}\right|_{0} ^{4}=\frac{4 \pi}{3}\left[\left(4+\frac{1}{4}\right)^{3 / 2}-\left(\frac{1}{4}\right)^{3 / 2}\right] \\
& =\frac{4 \pi}{3} \frac{17^{3 / 4}-1}{8}=\frac{\pi}{6}\left(17^{3 / 2}-1\right) .
\end{aligned}
$$

12. A tank has volume 1000 liters and initially contains pure fresh water. Water containing 10 grams of salt per liter runs into the tank at a rate of $20 \mathrm{~L} / \mathrm{min}$. The salt water mixes instantly and completely with the fresh water, and the mixture drains out the bottom at a rate of $20 \mathrm{~L} / \mathrm{min}$. Find a formula for $S(t)$, the number of grams of salt in the tank after t minutes.

$$
\begin{gathered}
\frac{d S}{d t}=\text { salt flow in }- \text { salt flow out } \\
=10 \cdot 20-\frac{S}{1000} \cdot 20=200-\frac{1}{50} S \\
\frac{d S}{d t}+\frac{1}{50} S=200 \\
P=\frac{1}{50} \Rightarrow I=e^{\int \frac{1}{50} d t}=e^{t / 50} \\
e^{t / 50} \cdot 200=e^{t / 50} \frac{d S}{d t}+\frac{1}{50} e^{t / 50} S=\frac{d}{d t}\left(e^{t / 50} S\right) \\
e^{t / 50} S=\int 200 e^{t / 50} d t=10000 e^{t / 50}+C \\
\quad S(t)=10000+C e^{-t / 50} \\
0=S(0)=10000+C \Rightarrow C=-10000 \\
S(t)=10000\left(1-e^{-t / 50}\right)
\end{gathered}
$$

13. In this problem we shall use the trapezoid rule with $n=4$ to approximate $\int_{1}^{3} \sqrt{x} d x$. The three parts of the problem can be done in any order. Note: At no time should you be using the antiderivative of the function \sqrt{x}.
(a) Write out the trapezoid-rule approximation T_{4} to $\int_{1}^{3} \sqrt{x} d x$.

DO NOT SIMPLIFY; the purpose of this question is to show that you understand the formula, not that you can do arithmetic.

$$
\begin{aligned}
T_{4} & =\left(\frac{1}{2} f(1)+f(1.5)+f(2)+f(2.5)+\frac{1}{2} f(3)\right) \frac{3-1}{4} \\
& =\frac{1}{2}\left(\frac{1}{2} \sqrt{1}+\sqrt{1.5}+\sqrt{2}+\sqrt{2.5}+\frac{1}{2} \sqrt{3}\right)
\end{aligned}
$$

(b) Sketch the graph of $f(x)=\sqrt{x}, 1 \leq x \leq 3$, along with the approximating trapezoids.

(c) Using the error-bound formula

$$
\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}} \quad \text { where }\left|f^{\prime \prime}(x)\right| \leq K \text { for } a \leq x \leq b
$$

find an upper bound for the error in using T_{4} to approximate $\int_{1}^{3} \sqrt{x} d x$.

$$
f(x)=x^{1 / 2} \Rightarrow f^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 2}
$$

The maximum value of $\left|f^{\prime \prime}\right|$ occurs at the left end, $x=1$. Therefore, we can take $K=\frac{1}{4}$. Thus

$$
\left|E_{T}\right| \leq \frac{\frac{1}{4} \cdot 2^{3}}{12 \cdot 4^{2}}=\frac{1}{96}
$$

14. Evaluate $\int \frac{3 x^{2}-x+8}{x^{3}+4 x} d x$.

Perform a partial-fraction decomposition:

$$
\begin{gathered}
\frac{3 x^{2}-x+8}{x^{3}+4 x}=\frac{A}{x}+\frac{B x+C}{x^{2}+4} \\
3 x^{2}-x+8=A\left(x^{2}+4\right)+(B x+C) x=A x^{2}+4 A+B x^{2}+C x
\end{gathered}
$$

Setting $x=0$ yields $4 A=8$, or $A=2$. There are no other "special" values of x in this problem, so one should either choose two other values at random, or (more easily) just equate the coefficients of x and of x^{2} on the two sides of the equation:

$$
3=A+B=2+B, \quad-1=C
$$

Thus $B=1$ and $C=-1$;

$$
\frac{3 x^{2}-x+8}{x^{3}+4 x}=\frac{2}{x}+\frac{x-1}{x^{2}+4} .
$$

So the integral is

$$
\int \frac{2}{x} d x+\int \frac{x-1}{x^{2}+4} d x=2 \ln |x|+\frac{1}{2} \ln \left(x^{2}+4\right)-\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+C
$$

15. A plate of uniform density occupies the region bounded by $y=1+x^{3}, y=0, x=0$, and $x=2$. Find \bar{x}, the x component of the centroid (center of mass) of the plate.

Let ρ be the density. First find the mass of the plate:

$$
M=\int_{0}^{2} \rho\left(1+x^{3}\right) d x=\rho\left[x+\frac{x^{4}}{4}\right]_{0}^{2}=\rho(2+4-0-0)=6 \rho
$$

Then the first moment:

$$
M_{1}=\int_{0}^{2} \rho x\left(1+x^{3}\right) d x=\rho\left[\frac{x^{2}}{2}+\frac{x^{5}}{5}\right]_{0}^{2}=\rho\left(2+\frac{32}{5}-0-0\right)=\frac{42}{5} \rho .
$$

Then

$$
\bar{x}=\frac{M_{1}}{M}=\frac{42 \rho}{5 \cdot 6 \rho}=\frac{7}{5} .
$$

Note: The constant density cancels out of the calculation. Therefore, one can leave it out from the beginning (in problems where it is a constant); in that case, M is the area of the plate (not the mass).

