Name \qquad ID \qquad Sec \qquad
(Print) Last, First Middle
Signature \qquad
MATH 152
Final Exam
Spring 2001
Sections 201,202
P. Yasskin
Multiple Choice: (4 points each)

$1-12$	$/ 48$
13	$/ 13$
14	$/ 13$
15	$/ 13$
16	$/ 13$

1. Compute $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{2 n}$
a. e^{-2}
b. 1
c. $e^{1 / 2}$
d. e^{2}
e. ∞
2. Compute $\int_{0}^{\pi / 4} \sin ^{2} \theta \cos ^{2} \theta d \theta$
a. $\frac{\pi}{32}$
b. $\frac{\pi}{16}$
c. $\frac{\pi}{8}$
d. $\frac{\pi}{4}$
e. $\frac{\pi}{2}$
3. The region below $y=\frac{1}{x}$ above the x-axis between $x=1$ and $x=\infty$ is rotated about the x-axis. Find the volume of the solid of revolution.
a. $\frac{\pi}{4}$
b. $\frac{\pi}{2}$
c. π
d. 2π
e. 4π
4. Compute $\int_{0}^{1} x^{2} e^{-x} d x$
a. $-5 e^{-1}$
b. $2-5 e^{-1}$
c. $-e^{-1}$
d. $2-e^{-1}$
e. $e^{-1}-2$
5. Find the average value of the function $f(x)=\frac{1}{\left(x^{2}+9\right)^{3 / 2}}$ on the interval $[0,3]$.
a. $\frac{\sqrt{2}}{6}$
b. $\frac{\sqrt{2}}{27}$
c. $\frac{\sqrt{2}}{9}$
d. $\frac{1}{9 \sqrt{2}}$
e. $\frac{1}{27 \sqrt{2}}$
6. Find the angle between the vector $\vec{u}=(2,1,-2)$ and the normal to the plane through $P=(3,-4,12)$ containing the vectors $\vec{v}=(1,0,0)$ and $\vec{w}=(0,-3,4)$.
a. $\arccos \left(\frac{-22}{39}\right)$
b. $\arccos \left(\frac{15}{2}\right)$
c. $\arccos \left(\frac{3}{2}\right)$
d. $\arccos \left(\frac{2}{15}\right)$
e. $\arccos \left(\frac{2}{3}\right)$
7. Use the $4^{\text {th }}$ degree Maclaurin polynomial for $e^{-x^{2}}$ to estimate $\int_{0}^{1} e^{-x^{2}} d x$.
a. $1-\frac{1}{3}+\frac{1}{5}$
b. $1+\frac{1}{3}+\frac{1}{5}$
c. $1-\frac{1}{6}+\frac{1}{120}$
d. $1+\frac{1}{3}+\frac{1}{10}$
e. $1-\frac{1}{3}+\frac{1}{10}$
8. The series $\sum_{n=1}^{\infty} \frac{n}{n^{3 / 2}+1}$ is
a. convergent by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$
b. conv. by the Limit Comp. Test with $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$ but not by the Comp. Test
c. divergent by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$
d. div. by the Limit Comp. Test with $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$ but not by the Comp. Test
e. none of these
9. The area below $y=x^{2}$, above the x-axis, between $x=1$ and $x=2$ is rotated about the y-axis. Find the volume of the solid of revolution.
a. 4π
b. $\frac{15 \pi}{4}$
c. $\frac{15 \pi}{2}$
d. 8π
e. $\frac{31 \pi}{5}$
10. Compute $\sum_{n=2}^{\infty}\left(\frac{n+1}{n-1}-\frac{n+2}{n}\right)$
a. 0
b. 1
c. 2
d. 3
e. divergent
11. The Maclaurin series for $\sinh x$ is

$$
\sinh x=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots
$$

If you use the $5^{\text {th }}$-degree Maclaurin polynomial to approximate $\sinh x$ on the interval $\left[\frac{1}{2}, 2\right]$, bound the error in the approximation using the Taylor Remainder Inequality $\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \quad$ where $\quad M \geq\left|f^{(n+1)}(c)\right| \quad$ for all c between x and a.

HINT: $\sinh x:$

$\cosh x$:

a. $\frac{4}{15} \cosh 2$
b. $\frac{4}{45} \sinh 2$
c. $\frac{4}{45} \cosh \frac{1}{2}$
d. $\frac{4}{15} \sinh \frac{1}{2}$
e. $\frac{4}{45} \cosh 2$
12. Find the point (a, b, c) where the line $x=2-t \quad y=3+2 t \quad z=4+t$ intersects the plane $2 x-y+3 z=14$. Then $a+b+c=$
a. 1
b. 3
c. 5
d. 7
e. 9

Work Out (13 points each)

Show all your work. Partial credit will be given. You may not use a calculator.
13. Find the solution of the differential equation $x^{3} \frac{d y}{d x}-2 y=4$ satisfying the initial condition $y(1)=3$.
14. The curve $y=x^{2}$ for $0 \leq x \leq \sqrt{2}$ is rotated about the y-axis. Find the surface area of the resulting surface.
15. A plate in the shape of a semicircle is placed at the bottom if a tank with the straight edge down. The radius of the circle is 4 cm and the water in the tank is 6 cm deep.
What is the force on the plate?
(The density of water is $\rho=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ and
 the acceleration of gravity is $g=9.8 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}$, but you may leave your answer in terms of ρg.)
16. Find the interval of convergence of the series $\sum_{n=2}^{\infty} \frac{(x-3)^{n}}{n(\ln n)^{2}}$.

Be sure to check the endpoints.
Name or quote the test(s) you use and check out all requirements of the test.

