Name	ID	Sec		
(Print) Last, First M	liddle		1-12	/48
Signature			13	/13
			14	/13
MATH 152 Sections 201,202	Final Exam	Spring 2001 P. Yasskin	15	/13
Multiple Choice: (4 points each			16	/13
($1 \rightarrow 2n$			

- 1. Compute $\lim_{n \to \infty} \left(1 \frac{1}{n}\right)$
 - **a**. e⁻²
 - **b**. 1 **c**. $e^{1/2}$
 - **d**. e^2
 - **e**. ∞
- **2**. Compute $\int_{0}^{\pi/4} \sin^2\theta \cos^2\theta \, d\theta$
 - **a.** $\frac{\pi}{32}$ **b.** $\frac{\pi}{16}$ **c.** $\frac{\pi}{8}$ **d.** $\frac{\pi}{4}$ **e.** $\frac{\pi}{2}$

3. The region below $y = \frac{1}{x}$ above the *x*-axis between x = 1 and $x = \infty$ is rotated about the *x*-axis. Find the volume of the solid of revolution.

- **a**. $\frac{\pi}{4}$ **b**. $\frac{\pi}{2}$
- **c**. π
- **d**. 2π
- **e**. 4π

- 4. Compute $\int_0^1 x^2 e^{-x} dx$
 - **a**. −5*e*⁻¹ **b.** $2 - 5e^{-1}$ **c.** $-e^{-1}$ **d.** $2 - e^{-1}$

 - **e**. $e^{-1} 2$
- 5. Find the average value of the function $f(x) = \frac{1}{(x^2+9)^{3/2}}$ on the interval [0,3].

6. Find the angle between the vector $\vec{u} = (2, 1, -2)$ and the normal to the plane through P = (3, -4, 12) containing the vectors $\vec{v} = (1, 0, 0)$ and $\vec{w} = (0, -3, 4)$.

a.
$$\operatorname{arccos}\left(\frac{-22}{39}\right)$$

b. $\operatorname{arccos}\left(\frac{15}{2}\right)$
c. $\operatorname{arccos}\left(\frac{3}{2}\right)$
d. $\operatorname{arccos}\left(\frac{2}{15}\right)$
e. $\operatorname{arccos}\left(\frac{2}{3}\right)$

7. Use the 4th degree Maclaurin polynomial for e^{-x^2} to estimate $\int_0^1 e^{-x^2} dx$.

a.
$$1 - \frac{1}{3} + \frac{1}{5}$$

b. $1 + \frac{1}{3} + \frac{1}{5}$
c. $1 - \frac{1}{6} + \frac{1}{120}$
d. $1 + \frac{1}{3} + \frac{1}{10}$
e. $1 - \frac{1}{3} + \frac{1}{10}$

8. The series $\sum_{n=1}^{\infty} \frac{n}{n^{3/2}+1}$ is

- **a**. convergent by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$ **b**. conv. by the Limit Comp. Test with $\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$ but not by the Comp. Test
- c. divergent by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$

d. div. by the Limit Comp. Test with $\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$ but not by the Comp. Test

e. none of these

- **9**. The area below $y = x^2$, above the *x*-axis, between x = 1 and x = 2 is rotated about the *y*-axis. Find the volume of the solid of revolution.
 - **a.** 4π **b.** $\frac{15\pi}{4}$ **c.** $\frac{15\pi}{2}$ **d.** 8π **e.** $\frac{31\pi}{5}$

10. Compute $\sum_{n=2}^{\infty} \left(\frac{n+1}{n-1} - \frac{n+2}{n} \right)$

- **a**. 0
- **b**. 1
- **c**. 2
- **d**. 3
- e. divergent
- **11**. The Maclaurin series for $\sinh x$ is

$$\sinh x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$$

If you use the 5th-degree Maclaurin polynomial to approximate $\sinh x$ on the interval $\left[\frac{1}{2}, 2\right]$, bound the error in the approximation using the Taylor Remainder Inequality $|R_n(x)| \leq \frac{M}{(n+1)!} |x-a|^{n+1}$ where $M \geq |f^{(n+1)}(c)|$ for all *c* between *x* and *a*.

- **12.** Find the point (a, b, c) where the line x = 2 t y = 3 + 2t z = 4 + t intersects the plane 2x y + 3z = 14. Then a + b + c =
 - **a**. 1
 - **b**. 3
 - **c**. 5
 - **d**. 7
 - **e**. 9

Show all your work. Partial credit will be given. You may not use a calculator.

13. Find the solution of the differential equation $x^3 \frac{dy}{dx} - 2y = 4$ satisfying the initial condition y(1) = 3.

14. The curve $y = x^2$ for $0 \le x \le \sqrt{2}$ is rotated about the *y*-axis. Find the surface area of the resulting surface.

15. A plate in the shape of a semicircle is placed at the bottom if a tank with the straight edge down. The radius of the circle is 4 cm and the water in the tank is 6 cm deep. What is the force on the plate?

(The density of water is $\rho = 1000 \frac{\text{kg}}{\text{m}^3}$ and the acceleration of gravity is $g = 9.8 \frac{\text{m}}{\text{sec}^2}$,

but you may leave your answer in terms of ρg .)

16. Find the interval of convergence of the series

$$\sum_{n=2}^{\infty} \frac{(x-3)^n}{n(\ln n)^2}.$$

Be sure to check the endpoints.

Name or quote the test(s) you use and check out all requirements of the test.