MATH 152, SPRING 2006 COMMON EXAM I - VERSION A

NAME (print):	
INSTRUCTOR:	
SECTION NUMBER:	

UIN: _____

DIRECTIONS:

- 1. The use of a calculator, laptop or computer is prohibited.
- 2. In Part 1 (Problems 1-10), mark the correct choice on your ScanTron form No. 815-E using a No. 2 pencil. For your own records, also record your choices on your exam! ScanTrons will be collected from all examinees after 90 minutes and will not be returned.
- 3. In Part 2 (Problems 11-14), present your solutions in the space provided. *Show all your work* neatly and concisely and *clearly indicate your final answer*. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.
- 4. Be sure to write your name, section number and version letter of the exam on the ScanTron form.

THE AGGIE CODE OF HONOR

"An Aggie does not lie, cheat or steal, or tolerate those who do."

Signature: _____

DO NOT WRITE BELOW!

Question	Points Awarded	Points
1-10		50
11		8
12		24
13		9
14		9
		100

PART I

- 1. (5 pts) Find the average value of $f(x) = x\sqrt{x^2 1}$ on the interval $1 \le x \le 4$.
 - (a) $\sqrt{15}$
 - (b) $5\sqrt{15}$
 - (c) $\frac{5\sqrt{15}}{3}$

 - (d) $2\sqrt{15}$
 - (e) $3\sqrt{15}$

2. (5 pts) Compute
$$\int_0^1 x e^{-2x} dx$$
.
(a) $1 - 3e^{-2}$
(b) $\frac{3 - e^{-2}}{2}$
(c) $\frac{3 + e^{-2}}{2}$
(d) $\frac{1 - 3e^{-2}}{4}$
(e) $\frac{1 + 3e^{-2}}{4}$

3. (5 pts) Compute $\int_{0}^{5} \sqrt{25 - x^{2}} dx$. (a) π (b) $\frac{25\pi}{4}$ (c) 5π (d) 2π

(e)
$$\frac{25\pi}{8}$$

4. (5 pts) Calculate
$$\int \frac{1}{x(x^2 - 1)} dx$$
, assuming that $x > 1$.
(a) $\ln(\tan^{-1}(x^2 + 1)) + C$
(b) $\ln\left(\frac{1}{x(x^2 - 1)}\right) + C$
(c) $\ln\left(\frac{\sqrt{x^2 + 1}}{x}\right) + C$
(d) $\ln\left(\frac{\sqrt{x^2 - 1}}{x}\right) + C$
(e) $\ln(x(x^2 - 1)) + C$

5. (5 pts) If
$$x = \sin^{-1} \frac{t}{2}$$
, then $\sec x =$
(a) $\frac{2}{\sqrt{4-t^2}}$
(b) $\frac{\sqrt{4-t^2}}{t}$
(c) $\frac{\sqrt{4-t^2}}{2}$
(d) $\frac{2}{t}$
(e) $\frac{t}{\sqrt{4-t^2}}$

6. (5 pts) Which of the following integrals represents the area of the region bounded by the graphs of $y = x^2$ and $y = \sqrt{x}$?

(a)
$$\int_0^1 (x^2 - \sqrt{x}) dx$$

(b) $\int_0^1 (\sqrt{x} - x^2) dx$
(c) $\int_0^1 (y^2 - \sqrt{y}) dy$
(d) $\pi \int_0^1 (x - x^4) dx$
(e) $\int_0^2 (\sqrt{y} - y^2) dy$

- 7. (5 pts) The base of a solid is the semicircle $0 \le y \le \sqrt{9 x^2}$ and the cross sections perpendicular to the x-axis are squares. Find its volume.
 - (a) $\frac{9\pi}{2}$

 - (b) $\frac{9\pi}{4}$
 - (c) 12
 - (d) 18
 - (e) 36

8. (5 pts) Compute $\int_{1}^{e} \ln(2x) dx$. (a) $e \ln(2) - \ln(2) + e$ (b) $e \ln(2) + \ln(2) - e$ (c) $e \ln(2) - \ln(2) + 1$ (d) $e \ln(2) - \ln(2) - 1$ (e) $-e\ln(2) + \ln(2) + 1$

9.	(5 pt	s) (Comp	ute	$\int_0^{\pi/2}$	\sin^3	(2x)	dx .
	(a)	$\frac{2}{3}$						
	(b)	1						
	(c)	$\frac{3}{2}$						
	(d)	2						
	(e)	$\frac{5}{2}$						

- 10. (5 pts) A spring has a natural length of 1 meter and a force of 12 N is required to hold it stretched to a total length of 3 meters. How much work is done in stretching this spring from its natural length to a total length of 5 meters?
 - (a) 32 J.
 - (b) 48 J.
 - (c) 50 J.
 - (d) 72 J.
 - (e) 75 J.

PART II

11. Find the area of the region bounded by the line 2y = x and the parabola $y^2 = 8 - x$.

(a) (2 pts) Graph the region.

(b) (3 pts) Set-up the integral.

(c) (3 pts) Evaluate the integral.

12. Find the following indefinite integrals:

(a) (8 pts)
$$\int \frac{1}{\sqrt{9x^2 - 4}} dx$$

(b) (8 pts) $\int \frac{x^4}{\sqrt{1-x^{10}}} dx$

Problem continues on next page

(c) (8 pts) $\int x \tan^{-1} x \, dx$

13. (9 pts) Consider the region in the first quadrant bounded by the curves $y = x^2$ and y = 2x. Use the method of *washers* to compute the volume of the solid obtained by revolving this region about the *x*-axis.

14. (9 pts) Consider the region in the first quadrant bounded by the curves $y^2 = x$ and $y = x^3$. Use the method of *cylindrical shells* to compute the volume of the solid obtained by revolving this region about the x-axis.

End of exam