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1. (c) We have

fave = 1
b−a

∫ b
a f (x) dx = 1

4−1

∫ 4
1

(
x2 − 1

)1/2
x dx

=
(

1
3

) (
1
2

) (
2
3

) (
x2 − 1

)3/2
∣∣∣4
1

= 1
9 · 15

√
15− 0 = 5

3

√
15.

2. (d) Use integration by parts. First compute an antiderivative,
then apply the FTC.

• Let
u = x dv = e−2x dx
du = dx v = −1

2e−2x . Then∫
xe−2x dx = −1

2xe−2x + ∫ 1
2e−2x dx

= −1
2xe−2x − 1

4e−2x = −1
4 (2x + 1) e−2x.

• Hence
∫ 1

0 xe−2x dx =
(
−1

4 (2x + 1) e−2x
) ∣∣1

0

=
(
−3

4e−2
)

−
(
−1

4

)
= 1−3e−2

4 .

3. (b) Use trigonometric substitution. Letx = 5 sinθ . Then

dx = 5 cosθ dθ and we have the table
x 0 5
θ 0 π/2

. So

∫ 5

0

√
25− x2 dx =

∫ π/2

0
5 cosθ · 5 cosθ dθ

= 25

2

∫ π/2

0
1 + cos 2θ dθ

= 25
2

(
θ + 1

2 sin 2θ
) ∣∣∣π/2

0

= 25
4 π − 0 = 25

4 π.

[Alternatively, the integral
∫ 5

0

√
25− x2 dx represents the

area in the first quadrant under the curvey =
√

25− x2, part
of the circlex2 + y2 = 25 = 52. This quarter-circular area is
1
4πr 2 = 1

4π (5)2 = 25
4 π .]

4. (d) We’ll integrate the rational function via partial fractions.

• Split the integrand into a sum of partial fractions.

1

x (x − 1) (x + 1)
= A

x
+ B

x − 1
+ C

x + 1

1 = A
(

x2 − 1
)

+ B
(

x2 + x
)

+ C
(

x2 − x
)

0x2 + 0x + 1 = (A + B + C) x2 + (B − C) x + −A

• Equate coefficients of like terms. Thus 1= −A,
whenceA = −1. NextB − C = 0 impliesC = B.
Substituting forA andC in A + B + C = 0 yields
2B − 1 = 0, whenceB = 1

2 = C. Therefore,

1

x (x − 1) (x + 1)
= −1

x
+

1
2

x − 1
+

1
2

x + 1
.

• Integrate term-by-term. Recall thatx > 1. Hence∫
1

x (x − 1) (x + 1)
dx

=
∫ −1

x
+

1
2

x − 1
+

1
2

x + 1
dx

= − ln x + 1
2 ln (x − 1) + 1

2 ln (x + 1) + C

= ln

(√
x2 − 1

x

)
+ C

via the properties of logarithms.

5. (a) If x = sin−1 t
2, thenx is the angle whose sine (opp / hyp)

is t/2. Draw a right triangle. Then secx = 1/ cosx (hyp/adj)

equals
2√

4 − t2
.

t
2

(4 − t2)1/2

x

X1A/5

6. (b) When the curvesy = x2 andy = √
x intersect, their

y-coordinates are equal. Thusx2 = √
x impliesx4 = x.

Hence 0= x4 − x = x
(
x3 − 1

)
whencex = 0, 1. Since(

1
4

)2 = 1
16 < 1

2 =
√

1
4, we conclude thaty = x2 lies below

y = √
x on [0, 1]. Therefore the area of the region is given

by
∫ 1

0
√

x − x2 dx.

7. (e) The volume by slicing isV = ∫
A (x) dx = ∫

y2 dx

= ∫ 3
−3 9 − x2 dx = 2

∫ 3
0 9 − x2 dx = 2

(
9x − 1

3x3
) ∣∣∣3

0= 2 (27− 9) − 0 = 36.

8. (c) Use integration by parts. First compute an antiderivative,
then apply the FTC.

• Let
u = ln (2x) dv = dx
du = 2

2x dx = 1
x dx v = x

. Then∫
ln (2x) dx = x ln (2x) − ∫

1dx
= x ln (2x) − x = x (ln (2x) − 1).

• Hence
∫ e

1 ln (2x) dx = x (ln (2x) − 1)
∣∣e
1= (e(ln (2e) − 1)) − (ln 2 − 1) =

e(ln 2 + 1 − 1) − ln 2 + 1 = e ln 2 − ln 2 + 1.

9. (a) This is a trigonometric integral. First compute an
antiderivative, then apply the FTC.∫

(sin 2x)3 dx =
∫

sin 2x
(
1 − cos2 2x

)
dx

=
∫

sin 2x dx+
∫

(cos 2x)2 (− sin 2x) dx

= −1
2 cos 2x +

(
1
2

) (
1
3

)
(cos 2x)3

Therefore,
∫ π/2

0 (sin 2x)3 dx =
(

1
6 cos3 2x − 1

2 cos 2x
) ∣∣∣π/2

0

=
(
−1

6 + 1
2

)
−
(

1
6 − 1

2

)
= 1 − 1

3 = 2
3.

10. (b) Via Hooke’s Law we haveF(x) = kx or 12= 2k,
whencek = 6. The work done is

W = ∫ b
a F (x) dx = ∫ 4

0 6x dx = 3x2
∣∣4
0 = 48 J.

1



11. When the curvesx = 2y andx = 8 − y2 intersect, their
x-coordinates are equal. Thus 2y = 8 − y2 implies
0 = y2 + 2y − 8 = (y + 4) (y − 2) whencey = −4, 2.
Since 2(0) = 0 < 8 = 8 − 02, we conclude thatx = 2y lies
to the left ofx = 8 − y2 on [−4, 2]. The area of the region is
given by

∫ 2
−4 8 − y2 − 2y dy, which we now compute.

=
(
8y − 1

3 y3 − y2
) ∣∣∣2−4

=
(
16− 8

3 − 4
)

−
(
−32+ 64

3 − 16
)

= 12− 8
3 + 48− 64

3

= 60− 72
3 = 60− 24 = 36

Here is a picture of the region.
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12. (a) Let 3x = 2 secθ . Then 3dx = 2 secθ tanθ dθ or
dx = 2

3 secθ tanθ dθ . Hence (pic at bottom right!)

∫
1√

9x2 − 4
dx =

∫ 2
3 secθ tanθ dθ

2 tanθ

= 1
3

∫
secθ dθ

= 1
3 ln |secθ + tanθ | + C

= 1

3
ln

∣∣∣∣∣3x

2
+
√

9x2 − 4

2

∣∣∣∣∣+ C

or 1
3 ln

∣∣∣3x +
√

9x2 − 4
∣∣∣+ K via log properties.

(b) Letu = x5. Thendu = 5x4 dx or 1
5 du = x4 dx. Thus

∫
x4√

1 − x10
dx =

∫
x4√

1 − (
x5
)2 dx

= 1

5

∫
1√

1 − u2
du

= 1
5 sin−1 u + C

= 1
5 sin−1 (x5)+ C.

(c) Use integration by parts.

Let
u = tan−1 x dv = x dx
du = 1

1+x2 dx v = 1
2x2 . Then

∫
x tan−1 x dx = 1

2
x2 tan−1 x − 1

2

∫
x2

1 + x2
dx

= 1

2
x2 tan−1 x − 1

2

∫
1 − 1

1 + x2
dx

= 1

2
x2 tan−1 x − 1

2
x + 1

2
tan−1 x + C

or

(
x2 + 1

)
tan−1 x − x

2
+ C.

13. When the curvesy = x2 andy = 2x intersect, their
y-coordinates are equal. Thusx2 = 2x implies
0 = x2 − 2x = x (x − 2) whencex = 0, 2. Since
12 = 1 < 2 = 2 (1), we conclude thaty = x2 lies below
y = 2x on [0, 2]. Using washers, the volume swept out by
revolving the region between these curves about thex-axis is

given by
∫ b

a πr 2
o − πr 2

i dx = π
∫ 2

0 (2x)2 − (
x2)2 dx, which

we now compute.

π

∫ 2

0
4x2 − x4 dx = π

(
4
3x3 − 1

5x5
) ∣∣∣2

0

= π
(

32
3 − 32

5

)
− 0

= 32π
(

1
3 − 1

5

)
= 32π

(
5−3
15

)
= 64π

15

Here is a figure of the region that is rotated about thex-axis.
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14. When the curvesx = y2 andx = y1/3 intersect, their
x-coordinates are equal. Thusy2 = y1/3 implies
0 = y6 − y = y

(
y5 − 1

)
whencey = 0, 1. Since(

1
8

)2 = 1
64 < 1

2 =
(

1
8

)1/3
, we conclude thatx = y2 lies to

the left ofx = y1/3 on [0, 1]. Using cylindrical shells, the
volume swept out by revolving the region between these
curves about thex-axis is given by

∫ d
c 2πr w dy

= 2π
∫ 1

0 y
(
y1/3 − y2) dy, which we now compute.

2π

∫ 1

0
y4/3 − y3 dy = 2π

(
3
7 y7/3 − 1

4 y4
) ∣∣∣1

0

= 2π
(

3
7 − 1

4

)
− 0

= 2π
(

12−7
28

)
= 5π

14

Here is a figure of the region that is rotated about thex-axis.
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