
MATH 152, SPRING 2006
COMMON EXAM II - VERSION A

LAST NAME, First Name (print):

INSTRUCTOR:

SECTION NUMBER:

UIN:

DIRECTIONS:

1. The use of a calculator, laptop or computer is prohibited.

2. In Part 1 (Problems 1-10), mark the correct choice on your ScanTron form No. 815-E using a No. 2 pencil. For
your own records, also record your choices on your exam! ScanTrons will be collected from all examinees after 90
minutes and will not be returned.

3. In Part 2 (Problems 11-14), present your solutions in the space provided. Show all your work neatly and concisely
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PART I

1. (5 pts) The curve C is given by the parametric equations x = t2 , y = t2 + t for 0 ≤ t ≤ 1 . Which integral gives
the length of the curve C ?

(a)
∫ 1

0

√
t2 + 2t3 + 2t4 dt

(b)
∫ 1

0

√
1 + t2 + 2t3 + 2t4 dt

(c)
∫ 1

0

√
1 + 4t + 8t2 dt

(d)
∫ 1

0

√
2 + 4t + 8t2 dt

(e)
∫ 1

0

√
2 + 4t dt

2. (5 pts) Which differential equation is not separable?

(a)
dy

dx
= (sin x)(cos y)

(b)
dy

dx
= xy + x2y

(c)
dy

dx
= xy2 + x2y

(d)
dy

dx
= ex+y

(e)
dy

dx
= 1 + x + y + xy

Exam continues on next page
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3. (5 pts) An integrating factor for the differential equation y ′ + (2 sin 2x)y = cos 4x is

(a) − cos(2x)

(b) sin(2x)

(c) e
1
4 sin(4x)

(d) e− cos(2x)

(e) esin(2x)

4. (5 pts) A tank contains 100 L of pure water. Brine that contains 0.1 kg of salt per liter enters the tank at a rate of
10 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. If y(t) is the quantity
of salt in kilograms dissolved in the tank at time t , then y satisfies

(a)
dy

dt
= 1 − y

10
, y(0) = 0.1

(b)
dy

dt
= 1 − y

10
, y(0) = 0

(c)
dy

dt
= − y

10
, y(0) = 0

(d)
dy

dt
= − y

100
, y(0) = 0.1

(e)
dy

dt
= 10 − y

100
, y(0) = 0

Exam continues on next page
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5. (5 pts) Which statement about
∫ ∞

1

x

1 + x4
dx is true?

(a) converges by comparison to
∫ ∞

1

1
x3

dx

(b) diverges by comparison to
∫ ∞

1

1
x3

dx

(c) converges by comparison to
∫ ∞

1

1
x

dx

(d) diverges by comparison to
∫ ∞

1

1
x

dx

(e) diverges by comparison to
∫ ∞

1

xdx

6. (5 pts) Find the x-coordinate of the center of mass of the semi-circular plate of radius 4, shown as the region R in
the accompanying figure.

0 2 4
−4

−3

−2

−1

0

1

2

3

4

R

(a) 36

(b)
16
3π

(c) 54

(d)
27
π

(e) π

Exam continues on next page
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For problems 7 and 8 refer to the following table of function values.

x 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
f(x) 1.00 0.50 0.25 0.75 0.40 0.30 0.20 0.10 0.70

7. (5 pts) Calculate the trapezoid approximation of
∫ 2

0

f(x) dx for the partition of 0 ≤ x ≤ 2 into four equal

sub-intervals.

(a) 1.60

(b) 1.75

(c) 1.00

(d) 0.825

(e) 0.85

8. (5 pts) Calculate the midpoint approximation of
∫ 2

0

f(x) dx for the partition of 0 ≤ x ≤ 2 into four equal

sub-intervals.

(a) 1.00

(b) 0.85

(c) 0.825

(d) 1.60

(e) 1.75

Exam continues on next page
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9. (5 pts) Find the general solution of
dy

dx
= (2 + 3x2)(y2 + 1) .

(a) y = 2x + x3 + C

(b) y = sin(2x + x3 + C)

(c) y = sin(2x + x3)

(d) y = tan(2x + x3) + C

(e) y = tan(2x + x3 + C)

10. (5 pts) If
dy

dx
= 2y and y(0) = 4 , then y(1) =

(a) 2e4

(b) 4e4

(c) 4 ln 2

(d) 4e2

(e) 2e2

Exam continues on next page
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PART II

11. (12 pts) Calculate the length of the curve y =
x2

4
− ln x

2
from x = 1 to x = 2 .

Exam continues on next page
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12. (12 pts) Solve the differential equation xy ′ + 2y = x3 with the initial condition y(−1) = 2 .

Exam continues on next page

8



13. Evaluate each of the following improper integrals if it converges or explain why it diverges.

(a) (7 pts)
∫ ∞

0

x

1 + x2
dx

(b) (7 pts)
∫ 2

0

1√
4 − x2

dx

Exam continues on next page
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14. (12 pts) Find the area of the surface obtained by rotating the curve y = x3 over 0 ≤ x ≤ 1 about the x-axis.

End of exam
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