Spring 2006 Math 152
 Exam 2A: Solutions
 Mon, 27/Mar
 (C)2006, Art Belmonte

1. (c) The arc length of the curve

$$
\mathbf{r}(t)=[x(t), y(t)]=\left[t^{2}, t^{2}+t\right], 0 \leq t \leq 1
$$

is represented by the following integral.

$$
\begin{aligned}
L=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t & =\int_{0}^{1}\|[2 t, 2 t+1]\| d t \\
& =\int_{0}^{1} \sqrt{4 t^{2}+4 t^{2}+4 t+1} d t \\
& =\int_{0}^{1} \sqrt{1+4 t+8 t^{2}} d t
\end{aligned}
$$

2. (c) The differential equation $\frac{d y}{d x}=x y^{2}+x^{2} y=x y(y+x)$ is not separable. Other choices are separable, as follows.

- (a) Rewrite $\frac{d y}{d x}=\sin x \cos y$ as $\sec y d y=\sin x d x$.
- (b) Rewrite $\frac{d y}{d x}=x y+x^{2} y=y\left(x+x^{2}\right)$ as

$$
\frac{1}{y} d y=\left(x+x^{2}\right) d x
$$

- (d) Rewrite $\frac{d y}{d x}=e^{x+y}=e^{x} e^{y}$ as $e^{-y} d y=e^{x} d x$.
- (e) Repeated factoring gives

$$
\begin{aligned}
\frac{d y}{d x} & =1+x+y+x y \\
\frac{d y}{d x} & =(1+x)+y(1+x) \\
\frac{d y}{d x} & =(1+x)(1+y)
\end{aligned}
$$

whence $\frac{1}{1+y} d y=(1+x) d x$.
3. (d) The linear differential equation

$$
y^{\prime}+(2 \sin 2 x) y=\cos 4 x
$$

is already in standard linear form (SLF). Accordingly, an integrating factor is $\mu=\exp \left(\int 2 \sin 2 x d x\right)=e^{-\cos 2 x}$.
4. (b) Let $y=y(t)$ be the amount of salt in the tank at time t. The classical balance law gives

$$
\begin{aligned}
\frac{d y}{d t} & =\text { rate in }- \text { rate out } \\
\frac{d y}{d t} & =\left(0.1 \frac{\mathrm{~kg}}{\mathrm{~L}} \times 10 \frac{\mathrm{~L}}{\min }\right)-\left(\frac{y \mathrm{~kg}}{100 \mathrm{~L}} \times 10 \frac{\mathrm{~L}}{\min }\right) \\
\frac{d y}{d t} & =1-\frac{y}{10} \quad \frac{\mathrm{~kg}}{\min }
\end{aligned}
$$

Since the tank initially contains pure water, we have $y(0)=0 \mathrm{~kg}$ of salt in the tank at the start. Therefore, $\frac{d y}{d t}=1-\frac{y}{10}, y(0)=0$.
5. (a) The integral $\int_{1}^{\infty} \frac{x}{1+x^{4}} d x$ converges by comparison to $\int_{1}^{\infty} \frac{1}{x^{3}} d x$. First note that the integrand $\frac{x}{1+x^{4}}$ is positive on $[1, \infty)$. We then have

$$
\begin{aligned}
\int_{1}^{\infty} \frac{x}{1+x^{4}} d x & \leq \int_{1}^{\infty} \frac{x}{x^{4}} d x=\int_{1}^{\infty} \frac{1}{x^{3}} d x \\
& =\lim _{t \rightarrow \infty} \int_{1}^{t} x^{-3} d x \\
& =\lim _{t \rightarrow \infty}\left(-\left.\frac{1}{2} x^{-2}\right|_{1} ^{t}\right) \\
& =\lim _{t \rightarrow \infty}\left(\frac{-1}{2 t^{2}}-\left(-\frac{1}{2}\right)\right)=\frac{1}{2}=0.50
\end{aligned}
$$

Hence $\int_{1}^{\infty} \frac{x}{1+x^{4}} d x$ converges by the Comparison
Theorem to a value $L \leq \frac{1}{2}$. [NOTE: This integral is easy to compute directly as follows. Although you were not required to do this, it provides a nice independent check!]

$$
\begin{aligned}
\int_{1}^{\infty} \frac{x}{1+x^{4}} d x & =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{x}{1+\left(x^{2}\right)^{2}} d x \\
& =\left.\lim _{t \rightarrow \infty} \frac{1}{2} \tan ^{-1}\left(x^{2}\right)\right|_{1} ^{t} \\
& =\lim _{t \rightarrow \infty}\left(\frac{1}{2} \tan ^{-1}\left(t^{2}\right)-\frac{1}{2}\left(\frac{\pi}{4}\right)\right) \\
& =\frac{1}{2}\left(\frac{\pi}{2}\right)-\frac{1}{2}\left(\frac{\pi}{4}\right)=\frac{\pi}{4}-\frac{\pi}{8}=\frac{\pi}{8} \\
& \approx 0.39 \leq 0.50
\end{aligned}
$$

6. (b) The plate has constant density. Its semicircular area is $A=\frac{1}{2} \pi r^{2}=\frac{1}{2} \pi(4)^{2}=8 \pi$. Accordingly, the x-coordinate of the center of mass is given by

$$
\begin{aligned}
\bar{x} & =\frac{1}{A} \int_{a}^{b} x(f(x)-g(x)) d x \\
& =\frac{1}{8 \pi} \int_{0}^{4} x\left(\sqrt{16-x^{2}}-\left(-\sqrt{16-x^{2}}\right)\right) d x \\
& =\frac{1}{8 \pi} \int_{0}^{4}\left(16-x^{2}\right)^{1 / 2} \cdot 2 x d x \quad\left(\text { Sub: } u=16-x^{2}\right) \\
& =\frac{-1}{8 \pi} \int_{16}^{0} u^{1 / 2} d u=\frac{1}{8 \pi} \int_{0}^{16} u^{1 / 2} d u \\
& =\left.\frac{1}{8 \pi}\left(\frac{2}{3}\right) u^{3 / 2}\right|_{0} ^{16}=\frac{16}{3 \pi}-0=\frac{16}{3 \pi} \approx 1.70
\end{aligned}
$$

7. (e) The step size is $h=\frac{b-a}{n}=\frac{2-0}{4}=\frac{1}{2}$. Hence
$T_{n}=$ step size \times (average of endpoint func vals + sum of interior func vals)

$$
\begin{aligned}
T_{4} & =\frac{1}{2}\left(\frac{1.00+0.70}{2}+(0.25+0.40+0.20)\right) \\
& =\frac{1}{2}(0.85+0.85)=0.85
\end{aligned}
$$

8. (c) The step size is $h=\frac{b-a}{n}=\frac{2-0}{4}=\frac{1}{2}$. Hence

$$
M_{n}=\text { step size } \times(\text { sum of midpoint function values })
$$

$$
\begin{aligned}
M_{4} & =\frac{1}{2}(0.50+0.75+0.30+0.10) \\
& =\frac{1}{2}(1.65)=0.825
\end{aligned}
$$

9. (e) The differential equation $\frac{d y}{d x}=\left(2+3 x^{2}\right)\left(y^{2}+1\right)$ is separable.

$$
\begin{aligned}
\frac{1}{1+y^{2}} d y & =\left(2+3 x^{2}\right) d x \\
\tan ^{-1} y & =2 x+x^{3}+C \\
y & =\tan \left(2 x+x^{3}+C\right)
\end{aligned}
$$

10. (d) The differential equation $\frac{d y}{d x}=2 y$ is separable. Find a general solution, then resolve the constant of integration using the initial condition $y(0)=4$.

$$
\begin{aligned}
\frac{1}{y} d y & =2 d x \\
\ln |y| & =2 x+A \\
\pm y=|y| & =e^{2 x+A}=e^{2 x} e^{A}=B e^{2 x} \\
y & =C e^{2 x}
\end{aligned}
$$

Substitute data: $4=C e^{0}=C$

$$
y=4 e^{2 x}
$$

$$
\text { Thus } y(1)=4 e^{2} \approx 29.56
$$

11. The arc length of the curve $y=\frac{x^{2}}{4}-\frac{\ln x}{2}, 1 \leq x \leq 2$, is

$$
\begin{aligned}
L & =\int d s=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{1}^{2} \sqrt{1+\left(\frac{x}{2}-\frac{1}{2 x}\right)^{2}} d x \\
& =\int_{1}^{2} \sqrt{1+\left(\frac{x}{2}\right)^{2}-\frac{1}{2}+\left(\frac{1}{2 x}\right)^{2}} d x \\
& =\int_{1}^{2} \sqrt{\left(\frac{x}{2}\right)^{2}+\frac{1}{2}+\left(\frac{1}{2 x}\right)^{2}} d x \\
& =\int_{1}^{2} \sqrt{\left(\frac{x}{2}+\frac{1}{2 x}\right)^{2}} d x \\
& =\int_{1}^{2} \frac{1}{2} x+\frac{1}{2} \frac{1}{x} d x \\
& =\left.\left(\frac{1}{4} x^{2}+\frac{1}{2} \ln x\right)\right|_{1} ^{2} \\
& =\left(1+\frac{1}{2} \ln 2\right)-\left(\frac{1}{4}\right)=\frac{3}{4}+\frac{1}{2} \ln 2 \approx 1.10 .
\end{aligned}
$$

12. The differential equation $x y^{\prime}+2 y=x^{3}$ is linear.

- Put the equation into standard linear form (SLF).

$$
y^{\prime}+\frac{2}{x} y=x^{2}
$$

Here $P(x)=\frac{2}{x}$, the coefficient of y in the SLF.

- Construct an integrating factor.

$$
\mu=\exp \left(\int P(x) d x\right)=\exp \left(\int \frac{2}{x} d x\right)=e^{2 \ln x}=x^{2}
$$

- Multiply the SLF by μ.

$$
x^{2} y^{\prime}+2 x y=x^{4} \quad \text { or } \quad\left(x^{2} y\right)^{\prime}=x^{4}
$$

- Integrate to obtain $x^{2} y=\frac{1}{5} x^{5}+C$. Therefore,

$$
y=\frac{1}{5} x^{3}+C x^{-2}
$$

is a general solution.

- Use the initial condition $y(-1)=2$ to determine C and thus the unique solution to the initial value problem.

$$
\begin{aligned}
2=y(-1) & =-\frac{1}{5}+C \\
C & =\frac{10}{5}+\frac{1}{5}=\frac{11}{5} \\
y & =\frac{1}{5} x^{3}+\frac{11}{5} x^{-2}
\end{aligned}
$$

13. (a) The integral $\int_{0}^{\infty} \frac{x}{1+x^{2}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{x}{1+x^{2}} d x$ diverges to ∞ via direct computation.

$$
\left.\lim _{t \rightarrow \infty} \frac{1}{2} \ln \left(1+x^{2}\right)\right|_{0} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{1}{2} \ln \left(1+t^{2}\right)-0\right)=\infty
$$

(b) The integral $\int_{0}^{2} \frac{1}{\sqrt{4-x^{2}}} d x=\lim _{t \rightarrow 2^{-}} \int_{0}^{t} \frac{1}{\sqrt{4-x^{2}}} d x$ converges to $\frac{1}{2} \pi$ as follows.

$$
\begin{aligned}
\lim _{t \rightarrow 2^{-}} \int_{0}^{t} \frac{1}{\sqrt{4-x^{2}}} d x & =\lim _{t \rightarrow 2^{-}} \frac{1}{2} \int_{0}^{t} \frac{1}{\sqrt{1-\left(\frac{1}{2} x\right)^{2}}} d x \\
& =\left.\lim _{t \rightarrow 2^{-}}\left(\sin ^{-1}\left(\frac{x}{2}\right)\right)\right|_{0} ^{t} \\
& =\lim _{t \rightarrow 2^{-}}\left(\sin ^{-1}\left(\frac{t}{2}\right)-0\right)=\frac{\pi}{2}
\end{aligned}
$$

14. The arc length differential is $d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$. The surface area obtained by rotating the curve $y=x^{3}$, $0 \leq x \leq 1$, about the x-axis is

$$
\begin{aligned}
S & =\int 2 \pi r d s \\
& =\int 2 \pi y d s \\
& =2 \pi \int_{0}^{1} x^{3} \sqrt{1+\left(3 x^{2}\right)^{2}} d x \\
& =2 \pi \int_{0}^{1}\left(1+9 x^{4}\right)^{1 / 2} x^{3} d x \quad\left(\text { Sub: } u=1+9 x^{4}\right) \\
& =\frac{2 \pi}{36} \int_{1}^{10} u^{1 / 2} d u=\frac{\pi}{18} \int_{1}^{10} u^{1 / 2} d u \\
& =\left.\frac{\pi}{18}\left(\frac{2}{3}\right) u^{3 / 2}\right|_{1} ^{10}=\frac{\pi}{27}(10 \sqrt{10})-\frac{\pi}{27} \\
& =\frac{\pi}{27}(10 \sqrt{10}-1) \approx 3.56 .
\end{aligned}
$$

