Spring 2006 Math 152
 Exam 3A: Solutions
 Mon, 01/May
 (C)2006, Art Belmonte

Notes

- The notation $b_{n} \downarrow 0$ means $0<b_{n+1} \leq b_{n}$ and $\lim b_{n}=0$; i.e., the sequence $\left\{b_{n}\right\}$ decreases to zero in the limit.
- GFF ["Generalized Fun Fact"]: Let $p(n)=\sum_{k=0}^{m} c_{k} n^{k}$ be a polynomial in n with $c_{m}>0$. Then $\lim _{n \rightarrow \infty} \sqrt[n]{p(n)}=1$. This boosts the power of the Root Test, which was optionally covered in some classes. (In most classes, only the Ratio Test was covered.)

1. (b) Algebraic manipulation gives

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{n^{2}+1}{n^{2}} \sin \left(\frac{\pi n}{2 n+1}\right)\right) \\
= & \lim _{n \rightarrow \infty}\left(\frac{1+\frac{1}{n^{2}}}{1} \sin \left(\frac{\pi}{2+\frac{1}{n}}\right)\right) \\
= & \sin \left(\frac{\pi}{2}\right)=1
\end{aligned}
$$

2. (d) Only the series $\sum \frac{(-1)^{n}}{\sqrt[4]{n}}$ converges, but not absolutely.

- I. The series $\sum \frac{(-1)^{n}}{n^{8}}$ converges absolutely since $\sum\left|a_{n}\right|=\sum \frac{1}{n^{8}}$, a convergent p-series $(p=8>1)$.
- II. The series $\sum(-1)^{n+1}\left(\frac{n^{5}+2}{n^{3}}\right)$ diverges by the Test for Divergence since $\lim a_{n} \neq 0$. (Indeed, the limit does not exist since $\lim \sup a_{n}=\infty$ and $\lim \inf a_{n}=-\infty$.)
- III. The alternating series $\sum \frac{(-1)^{n}}{\sqrt[4]{n}}$ converges by the Alternating Series Test since $b_{n}=\left|a_{n}\right|=\frac{1}{\sqrt[4]{n}} \downarrow 0$. Note, however, that $\sum\left|a_{n}\right|=\sum \frac{1}{n^{1 / 4}}$ is a divergent p-series $\left(p=\frac{1}{4} \leq 1\right)$. Accordingly, $\sum \frac{(-1)^{n}}{\sqrt[4]{n}}$ converges, but is not absolutely convergent. (We say it is conditionally convergent.)

3. (b) We have $\frac{1}{1-\left(-x^{4}\right)}=\sum_{n=0}^{\infty}\left(-x^{4}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{4 n}$, provided $\left|-x^{4}\right|<1$ or $|x|<1$.
4. (d) The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is a telescoping sum.

- First do a partial fraction decomposition.

$$
\begin{aligned}
\frac{1}{n(n+1)} & =\frac{A}{n}+\frac{B}{n+1} \\
1 & =A(n+1)+B n \\
0 n+1 & =(A+B) n+A
\end{aligned}
$$

Thus $A+B=0$ and $A=1$, whence $B=-A=-1$.
Therefore, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$.

- Now look at the sequence of partial sums to determine its limit s, the sum of the series.

$$
\begin{aligned}
s_{1} & =1-\frac{1}{2} \\
s_{2} & =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)=1-\frac{1}{3} \\
& \vdots \\
s_{n} & =1-\frac{1}{n+1} \\
s=\lim _{n \rightarrow \infty} s_{n} & =1
\end{aligned}
$$

5. (c) Only statement III is true.

- I. If $\lim b_{n}=0$, then $\sum b_{n}$ converges. This is false. A counterexample is the harmonic series $\sum \frac{1}{n}$, a divergent p-series $(p=1 \leq 1)$.
- II. If $0 \leq a_{n} \leq b_{n}$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges. This is false. A countexample is $\sum a_{n}=\frac{1}{n^{2}}$ and $\sum b_{n}=\sum \frac{1}{n}$. Note that $\sum \frac{1}{n}$, the harmonic series, diverges. Yet while $0 \leq a_{n}=\frac{1}{n^{2}} \leq \frac{1}{n}=b_{n}$, we see that $\sum \frac{1}{n^{2}}$ converges (p-series with $p=2>1$).
- III. If $\sum a_{n}$ converges, then $\lim a_{n}=0$. This is true. As stated in Section 10.2, this condition is necessary for a series to converge.

6. (d) Compute the sum of this geometric series via the Geometric Series Theorem.

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}=\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)^{n-1}=\frac{a}{1-r}=\frac{2 / 3}{1-\frac{2}{3}}=\frac{2 / 3}{1 / 3}=2
$$

7. (d) The series $\sum_{n=3}^{\infty} \frac{1}{n \ln n}$ diverges by the Integral Test.

$$
\begin{aligned}
\int_{3}^{\infty} \frac{1}{x \ln x} d x & =\lim _{t \rightarrow \infty} \int_{3}^{t} \frac{1}{\ln x} \frac{1}{x} d x \\
& =\lim _{t \rightarrow \infty} \int_{\ln 3}^{\ln t} \frac{1}{u} d u \quad(\operatorname{sub} u=\ln x) \\
& =\left.\lim _{t \rightarrow \infty} \ln u\right|_{\ln 3} ^{\ln t} \\
& =\lim _{t \rightarrow \infty}(\ln (\ln t)-\ln (\ln 3))=\infty
\end{aligned}
$$

8. (d) Note that $-\frac{1}{n} \leq \frac{\sin n}{n} \leq \frac{1}{n}$. Since $\lim _{n \rightarrow \infty}\left(-\frac{1}{n}\right)=0$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, we conclude that $\lim _{n \rightarrow \infty} \frac{\sin n}{n}=0$ by the Squeeze Theorem.
9. (c) The series $\sum_{n=1}^{\infty} \frac{x^{2 n}}{\sqrt{n}}$ converges for $-1<x<1$ as follows.

- The Ratio Test gives

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left(\frac{|x|^{2 n+2}}{\sqrt{n+1}} \frac{\sqrt{n}}{|x|^{2 n}}\right) \\
& =\lim _{n \rightarrow \infty} \sqrt{\frac{1}{1+\frac{1}{n}}}|x|^{2} \\
& =|x|^{2}<1 \\
& \Longrightarrow|x|<1
\end{aligned}
$$

Hence the radius of convergence is $R=1$.

- [Alternatively, use the Root Test along with the GFF. As $n \rightarrow \infty$, we have

$$
\sqrt[n]{\left|a_{n}\right|}=\frac{\left(|x|^{2 n}\right)^{1 / n}}{\sqrt[n]{\sqrt{n}}}=\frac{|x|^{2}}{\sqrt{\sqrt[n]{n}}} \rightarrow|x|^{2} \stackrel{\text { need }}{<} 1
$$

whence $|x|<1$ and $R=1$.]

- At the endpoints $x= \pm 1$, the series is $\sum \frac{1}{n^{1 / 2}}$, a divergent p-series $\left(p=\frac{1}{2} \leq 1\right)$. So the interval of convergence is $I=(-1,1)$.

10. (a) The series

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1}{(1+n) n^{p}}=\sum_{n=1}^{\infty} \frac{1}{n^{p}+n^{p+1}}
$$

converges for $p>0$ by the Limit Comparison Test.

- Let $\sum b_{n}=\sum \frac{1}{n^{p+1}}$. Then
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{p+1}}{(1+n) n^{p}}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1>0$.
Since $\sum \frac{1}{n^{p+1}}$ converges only if $q=p+1>1$ or $p>0$, we conclude by the Limit Comparison Test that $\sum \frac{1}{(1+n) n^{p}}$ converges only if $p>0$. [Brian Winn]
- Here is an alternative proof that employs repeated use of the Comparison Test instead.
- First, $\sum_{n=1}^{\infty} \frac{1}{n^{p}+n^{p+1}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{p+1}}=\sum_{n=1}^{\infty} \frac{1}{n^{q}}$, which converges provided $p+1=q>1$ or $p>0$. Therefore, $\sum_{n=1}^{\infty} \frac{1}{(1+n) n^{p}}$ converges for $p>0$ by the Comparison Test.
- Next,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}+n^{p+1}} \geq \sum_{n=1}^{\infty} \frac{1}{n^{p+1}+n^{p+1}}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{p+1}}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{q}},
$$

which diverges for $p+1=q \leq 1$ or $p \leq 0$.
Therefore, $\sum_{n=1}^{\infty} \frac{1}{(1+n) n^{p}}$ diverges for $p \leq 0$ by the Comparison Test.

- Accordingly, $\sum_{n=1}^{\infty} \frac{1}{(1+n) n^{p}}$ converges only when $p>0$.

11. The power series $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n 4^{n}}$ has radius of convergence $R=4$ and interval of convergence $I=[-1,7)$.

- The Ratio Test gives

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left(\frac{|x-3|^{n+1}}{(n+1) 4^{n+1}} \frac{n 4^{n}}{|x-3|^{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{1+\frac{1}{n}}\right) \frac{|x-3|}{4} \\
& =\frac{|x-3|}{4} \stackrel{\text { need }}{<} 1 \\
& \Longrightarrow|x-3|<4 .
\end{aligned}
$$

Hence the radius of convergence is $R=4$.

- [Alternatively, use the Root Test along with the GFF. As $n \rightarrow \infty$, we have

$$
\sqrt[n]{\left|a_{n}\right|}=\frac{|x-3|}{4 \sqrt[n]{n}}=\frac{|x-3|}{4} \stackrel{\text { need }}{<} 1
$$

whence $|x-3|<4$ and $R=4$.]

- At the left endpoint $x=-1$, we have the alternating series $\sum \frac{(-1)^{n}}{n}$, which converges by the Alternating Series Test since $b_{n}=\left|a_{n}\right|=\frac{1}{n} \downarrow 0$.
- At the right endpoint $x=7$, we have the harmonic series $\sum \frac{1}{n}$, a divergent p-series $(p=1 \leq 1)$.
- So the interval of convergence is $I=[-1,7)$.

12. (a) The series $\sum_{n=1}^{\infty} \frac{e^{n}}{n!}$ converges absolutely (and hence converges) by the Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left(\frac{e^{n+1}}{(n+1)!} \cdot \frac{n!}{e^{n}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{e}{n+1}=0<1
\end{aligned}
$$

(b) The alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+\ln n}$ converges by the Alternating Series Test since $b_{n}=\left|\frac{1}{a_{n}}\right|=\frac{1}{1+\ln n} \downarrow 0$.
(c) The series $\sum_{n=1}^{\infty} \frac{n}{n^{2.001}+4}$ converges by the Comparison Theorem since

$$
0 \leq \frac{n}{n^{2.001}+4} \leq \frac{n}{n^{2.001}}=\frac{1}{n^{1.001}}
$$

and $\sum \frac{1}{n^{1.001}}$ is a convergent p-series $(p=1.001>1)$.
13. Let $f(x)=e^{3 x}$ and $a=2$. Then $f^{(n)}(x)=3^{n} e^{3 x}$ and $f^{(n)}(2)=3^{n} e^{6}$. So the Taylor series for $f(x)=e^{3 x}$ at $a=2$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(2)}{n!}(x-2)^{n}=\sum_{n=0}^{\infty} \frac{3^{n} e^{6}}{n!}(x-2)^{n}
$$

14. (a) Recall that $\sin z=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1)!}$ for $z \in \mathbb{R}$. Thus

$$
\begin{aligned}
\int_{0}^{1} \sin \left(x^{2}\right) d x & =\int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n+1}}{(2 n+1)!} d x \\
& =\int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{(2 n+1)!} d x \\
& =\left.\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+3}}{(2 n+1)!(4 n+3)}\right)\right|_{x=0} ^{x=1} \\
& =\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} 1^{4 n+3}}{(2 n+1)!(4 n+3)}\right)-\left(\sum_{n=0}^{\infty} 0\right) \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!(4 n+3)}
\end{aligned}
$$

(b) The Alternating Series Estimation Theorem gives

$$
\left|R_{9}\right| \leq\left|a_{10}\right|=\frac{1}{10^{2}}=\frac{1}{100}
$$

15. (a) One unit vector that is parallel to $\mathbf{v}=[1,2,-2]$ is

$$
\hat{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{[1,2,-2]}{\sqrt{1+4+4}}=\left[\frac{1}{3}, \frac{2}{3},-\frac{2}{3}\right] .
$$

Another is $-\hat{\mathbf{v}}=\left[-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right]$.
(b) The vector (parallel) projection of $\mathbf{b}=[4,2,0]$ onto $\mathbf{a}=[1,-1,1]$ is

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{a}} \mathbf{b} & =\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}\right) \frac{\mathbf{a}}{\|\mathbf{a}\|} \\
& =\left(\frac{4-2+0}{\sqrt{1+1+1}}\right) \frac{[1,-1,1]}{\sqrt{3}} \\
& =\frac{2}{3}[1,-1,1]=\left[\frac{2}{3},-\frac{2}{3}, \frac{2}{3}\right]
\end{aligned}
$$

