
Student (Print) Section

Last, First Middle

Student (Sign)

Student ID

Instructor

MATH 152, Fall 2007

Common Exam 1

Test Form A
Solutions

Instructions:

You may not use notes, books, calculator or computer.
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Part I: Multiple Choice (5 points each)

There is no partial credit.

1. Compute ∫0

1
xe x2+1 dx

a. 1
2

e

b. 1
2

(e − 1)

c. 1
2

e2

d. 1
2

(e2 − 1)

e. 1
2

(e2 − e) correct choice

Use the substitution u = x2 + 1 du = 2x dx 1
2

du = x dx

∫0

1
xe x2+1 dx = 1

2 ∫1

2
eu du = 1

2
eu

1

2
= 1

2
(e2 − e)

2. Compute ∫0

π/2
x cosx dx

a. π
2

− 1 correct choice

b. 1 + π
2

c. π
2

d. 1 − π
e. π − 1

Use integration by parts with u = x dv = cosx dx

du = dx v = sin x

∫0

π/2
x cosx dx = x sin x − ∫ sin x dx

0

π/2
= x sin x + cosx

0

π/2

= π
2

sin π
2

+ cos π
2

− (cos0) = π
2

− 1

3. Find the area below the parabola, y = 3x − x2, above the x-axis.

a. 1
2

b. 9
2

correct choice

c. 27
2

d. 81
2

e. 10
3

The parabola intersects the x-axis when 3x − x2 = 0 or x = 0, 3.

A = ∫0

3
(3x − x2 ) dx = 3x2

2
− x3

3 0

3
= 27

2
− 9 = 9

2

2



4. Find the average value of f(x) = e3x on the interval [0, 2].

a. 1
3

(e6 − 1)

b. 1
3

e6

c. 1
6

(e6 − 1) correct choice

d. 1
6

e6

e. (e6 − 1)

fave = 1
2 ∫0

2
e3x dx = 1

6
e3x

0

2
= 1

6
(e6 − 1)

5. The region shown at the right is bounded

above by y = sin x and below by the x-axis.

It is rotated about the x-axis.

Find the volume swept out. 0 1 2 3
0.0

0.5

1.0

x

y

a. π2

2
correct choice

b. 2π2

c. 2π

d. π
2

e. π
4

As an x-integral, a slice is vertical and rotates into a disk.

V = ∫0

π
πR2 dx = ∫0

π
π(sin x)2 dx = π ∫0

π 1 − cos(2x)
2

dx = π
2

x − sin(2x)
2 0

π

= π2

2

6. The region in Problem 5 is rotated about the the line x = −1.
Which formula gives the volume swept out?

a. ∫0

π
π (1 + sin x)2 − 1 dx

b. ∫0

π
2π(x + 1) sin x dx correct choice

c. ∫0

π
π(x − 1) sin x dx

d. ∫−1

π
2πx sin x dx

e. ∫0

π
π(1 + sin x)2 dx

As an x-integral, a slice is vertical and rotates into a cylinder.

V = ∫0

π
2πrh dx = ∫0

π
2π(x + 1) sin x dx

This integral can be computed using integration by parts.
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7. The region bounded by the curves x = 1, y = 1 and y = 4
x is rotated about the x-axis.

Find the volume swept out.

a. π(8 ln 4 − 15)
b. π(15 − 8 ln 4)
c. 12π
d. 9π correct choice
e. 8π

0 1 2 3 4 5
0

1

2

3

4

5

x

y

As an x-integral, a slice is vertical and rotates into a washer.

V = ∫1

4
(πR2 − πr2 ) dx = ∫1

4
π 4

x
2

− π(1)2 dx = π ∫1

4 16
x2

− 1 dx = π −16
x − x

1

4
= 9π

8. A solid has a base which is a circle of radius 2

and has cross sections perpendicular to the y-axis

which are isosceles right triangles with a leg

on the base. Find the volume of the solid.

a. 32
3

b. 64
3

correct choice

c. 128
3

d. 16
3

π

e. 32
3

π

The width of the base is W(y) = 2 4 − y2 . The height is H = W

The area of the cross section is A(y) = 1
2

WH = 1
2

2 4 − y2 2 4 − y2 = 2(4 − y2 ).

V = ∫−2

2
A(y) dy = ∫−2

2
2(4 − y2 ) dy = 2 4y − y3

3 −2

2

= 4 8 − 8
3

= 32 2
3

= 64
3
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9. A certain spring is at rest when its mass is at x = 0.
It requires 24 Joules of work to stretch it from x = 0 to x = 4 meters.
What is the force required to maintain the mass at 4 meters?

a. 48 Newtons
b. 18 Newtons
c. 12 Newtons correct choice
d. 6 Newtons
e. 24 Newtons

The force is F = kx. The work is W = ∫0

4
F dx = ∫0

4
kx dx = 1

2
kx2

0

4
= 8k = 24.

So the force constant is k = 3. And the force is F = kx = 3 ⋅ 4 = 12.

10. Find the partial fraction expansion for f(x) = 5x2 + x + 12
x3 + 4x

.

a. 1
x

+ 3x − 2
x2 + 4

b. 2
x

+ x − 3
x2 + 4

c. 1
x

+ 2x + 3
x2 + 4

d. 2
x

+ 3x + 1
x2 + 4

e. 3
x

+ 2x + 1
x2 + 4

correct choice

f(x) = 5x2 + x + 12
x3 + 4x

= 5x2 + x + 12
x(x2 + 4)

= A
x

+ Bx + C
x2 + 4

Clear the denominator: 5x2 + x + 12 = A(x2 + 4) + x(Bx + C) = (A + B)x2 + Cx + 4A

Equate coefficients: A + B = 5 C = 1 4A = 12

Solve: A = 3 B = 2 C = 1

Substitute back: f(x) = 5x2 + x + 12
x3 + 4x

= 3
x

+ 2x + 1
x2 + 4
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Part II: Work Out (10 points each)

Show all your work. Partial credit will be given.

11. Compute
a. (5 points) ∫ cos3θdθ

u = sinθ du = cosθdθ

∫ cos3θdθ = ∫(1 − sin2θ) cosθdθ = ∫(1 − u2 ) du = u − u3

3
+ C = sinθ − sin3θ

3
+ C

Check: d
dθ

sinθ − sin3θ
3

= cosθ − 1
3

3 sin2θ(cosθ) = cosθ(1 − sin2θ) = cos3θ

b. (5 points) ∫ x3 ln x dx

Use integration by parts with
u = ln x dv = x3 dx

du = 1
x dx v = x4

4

∫ x3 ln x dx = x4

4
ln x − ∫ x4

4
1
x dx = x4

4
ln x − ∫ x3

4
dx = x4

4
ln x − x4

16
+ C

Check: d
dx

x4

4
ln x − x4

16
= x3 ln x + x4

4
1
x − x3

4
= x3 ln x
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12. Find the area between the cubic y = x3 − x2 and the line y = 2x.

The curves intersect when x3 − x2 = 2x or x3 − x2 − 2x = 0 or x(x2 − x − 2) = 0

or x(x + 1)(x − 2) = 0 or x = −1, 0, 2

Between −1 and 0, the cubic is above the line. (Plug in x = −1/2.)

Between 0 and 2, the line is above the cubic. (Plug in x = 1.)

So the area is

A = ∫−1

0
(x3 − x2 − 2x) dx + ∫0

2
(2x − x3 + x2 ) dx = x4

4
− x3

3
− x2

−1

0
+ x2 + x3

3
− x4

4 0

2

= (0) − 1
4

− −1
3

− 1 + 4 + 8
3

− 4 − (0) = −3 − 4 + 12 + 32
12

= 37
12

13. A water tower is made by rotating the curve y = x4 about the

y-axis, where x and y are in meters. If the tower is filled with water

(of density ρ = 1000 kg/m3) up to height y = 25 m, how much

work is done to pump all the water out a faucet at height 30 m?

Assume the acceleration of gravity is g = 9. 8 m/sec2.

You may give your answer as a multiple of ρg.

The cross section at height y is a circle of radius x = y1/4 an hence area A = πx2 = πy1/2.

A slice of thickness dy has volume dV = A dy = πy1/2 dy and mass dm = ρdV = ρπy1/2 dy.

This slice must be lifted a distance h = 30 − y.

So the work to lift it is dW = dmg h = ρπg(30 − y)y1/2 dy.

The total work is

W = ∫0

25
ρπg(30 − y)y1/2 dy = πρg ∫0

25
(30y1/2 − y3/2 ) dy = πρg 30

2y3/2

3
− 2y5/2

5 0

25

= πρg 30 2 ⋅ 53

3
− 2 ⋅ 55

5
= πρg(4 ⋅ 54 − 2 ⋅ 54 ) = 2 ⋅ 54πρg = 1250πρg

= 3. 848 5 × 107 Joules
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14. Compute ∫0

1 x2

(4 − x2 )3/2 dx

Let x = 2 sinθ. Then dx = 2 cosθdθ and 4 − x2 = 4 − 4 sin2θ = 4 cos2θ

Change limits: x = 0 @ θ = 0 and x = 1 @ sinθ = 1
2

or θ = π
6

∫0

1 x2

(4 − x2 )3/2 dx = ∫0

π/6 4 sin2θ
8 cos3θ

2 cosθdθ = ∫0

π/6
tan2θdθ = ∫0

π/6
(sec2θ − 1) dθ

= tanθ − θ
0

π/6 = 1
3

− π
6

15. Compute ∫0

4 x − 4
x2 + 16

dx

∫ x − 4
x2 + 16

dx = ∫ x
x2 + 16

dx + ∫ −4
x2 + 16

dx

Integral 1: u = x2 + 16 du = 2x dx 1
2

du = x dx

∫ x
x2 + 16

dx = 1
2 ∫

1
u du = 1

2
ln|u| + C = 1

2
ln(x2 + 16) + C

Integral 2: x = 4u dx = 4du

∫ −4
x2 + 16

dx = ∫ −16
16u2 + 16

du = − arctan(u) + C = − arctan x
4

+ C

So ∫ x − 4
x2 + 16

dx = 1
2

ln(x2 + 16) − arctan x
4

+ C

So ∫0

4 x − 4
x2 + 16

dx = 1
2

ln 32 − arctan(1) − 1
2

ln 16 − arctan(0)

= 1
2

ln 2 − π
4
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