Name	Sec ID		1-11	/66
MATH 152 Honors	Final Exam	Fall 2007	12	/12
Sections 201,202		P. Yasskin	13	/15
Multiple Choice: (6 points each)			14	/10
			Total	/103

- **1**. A 2 meter bar has linear density $\rho = 1 + x^3 \text{ kg/m}$ where x is measured from one end. Find the average density of the bar.
 - **a**. 2 kg/m
 - **b**. 3 kg/m
 - **c**. 4.5 kg/m
 - **d**. 5 kg/m
 - **e**. 6 kg/m

- **2**. A 2 meter bar has linear density $\rho = 1 + x^3$ kg/m where x is measured from one end. Find the center of mass of the bar.
 - **a.** $\frac{5}{7}$ m **b.** $\frac{5}{6}$ m **c.** $\frac{6}{5}$ m **d.** $\frac{7}{5}$ m **e.** $\frac{42}{5}$ m

3. Compute $\int x \arctan x \, dx$.

a.
$$\frac{3x^2}{2} \arctan x - \frac{x}{2} \ln(x^2 + 1) + C$$

b. $\frac{3x^2}{2} \arctan x + \frac{x}{2} \ln(x^2 + 1) + C$
c. $\frac{x^2}{2} \arctan x + \frac{3x}{2} \ln(x^2 + 1) + C$
d. $\frac{x^2}{2} \arctan x - \frac{1}{2}x - \frac{1}{2} \arctan x + C$
e. $\frac{x^2}{2} \arctan x - \frac{1}{2}x + \frac{1}{2} \arctan x + C$

4. Find the arclength of the parametric curve $x = t^4$ $y = \frac{1}{2}t^6$ for $0 \le t \le 1$.

- **a**. $\frac{61}{54}$ **b**. $\frac{16}{9}$ **c**. $\frac{11}{9}$ **d**. $\frac{1}{9}$ **e**. $\frac{1}{54}$

5. Which term appears in the partial fraction expansion of -

$$\frac{4x^2-2x+2}{(x-1)^2(x^2+1)}?$$

a.
$$\frac{-2}{(x-1)^2}$$

b. $\frac{1}{(x-1)^2}$
c. $\frac{2}{(x-1)^2}$
d. $\frac{-2}{x-1}$
e. $\frac{2}{x-1}$

- **6**. The base of a solid is the region bounded by the curves $y = x^2$, $y = -x^2$ and x = 2. The cross sections perpendicular to the *x*-axis are squares. Find the volume of the solid.
 - **a.** $\frac{128}{5}$ **b.** $\frac{32}{5}$ **c.** $\frac{16}{3}$ **d.** $\frac{8}{3}$ **e.** $\frac{16}{15}$

7. Find the solution of the differential equation $\frac{dy}{dx} = xy^2 + x$ satisfying the initial condition y(0) = 1.

a.
$$y = \sin\left(\frac{x^2}{2} + \frac{\pi}{2}\right)$$

b. $y = \tan\left(\frac{x^2}{2} + \frac{\pi}{4}\right)$
c. $y = \sin\left(\frac{x^2}{2}\right) + 1$
d. $y = \tan\left(\frac{x^2}{2}\right) + 1$
e. $y = \cos\left(\frac{x^2}{2}\right)$

8. If $g(x) = \cos(x^2)$, what is $g^{(8)}(0)$, the 8th derivative at zero? HINT: What is the coefficient of x^8 in the Maclaurin series for $\cos(x^2)$?

a.
$$8 \cdot 7 \cdot 6 \cdot 5$$

b. $\frac{1}{8 \cdot 7 \cdot 6 \cdot 5}$
c. 4!
d. $\frac{1}{4!}$
e. $\frac{1}{8!}$

- **9**. Suppose the series $\sum_{n=1}^{\infty} n e^{(-n^2)}$ is approximated by its 9th partial sum $\sum_{n=1}^{9} n e^{(-n^2)}$. Use an integral to bound the error in this approximation.
 - **a.** $\frac{1}{2}e^{-64}$ **b.** $\frac{1}{2}e^{-81}$ **c.** $\frac{1}{2}e^{-100}$ **d.** $\frac{1}{2}e^{-121}$ **e.** $\frac{1}{2}e^{-144}$

- **10**. Find the area of the triangle with vertices P = (2, -1, 3), Q = (1, 2, 1) and R = (3, 1, 4).
 - **a**. $\frac{1}{2}\sqrt{73}$
 - **b**. $\sqrt{73}$
 - **c**. $\frac{5}{2}\sqrt{3}$
 - **d**. $5\sqrt{3}$
 - **e**. $-5\sqrt{3}$

11. If \vec{u} points North East and \vec{v} points West, in which direction does $\vec{u} \times \vec{v}$ point?

- a. North West
- **b**. South
- c. South East
- **d**. Up
- e. Down

Work Out: (Points indicated. Part credit possible.)

12. (12 points) Compute $\int_{2}^{4} \frac{8}{x^{3}\sqrt{x^{2}-4}} dx$

13. (15 points) The curve $y = x^2$ is rotated about the *y*-axis to form a bowl. If the bowl contains 8π cm³ of water, what is the height of the water in the bowl?

- 14. (10 points) This question is designed to teach you about infinite products.
 - **a**. (2 pt) Define the partial sum, S_k , and the sum, S, of an infinite series $\sum_{n=0}^{\infty} a_n$. (Give one sentence including one equation for each.)

b. (2 pt) By analogy, define the partial product, P_k , and the product, P, of an infinite product $\prod_{n=0}^{\infty} a_n$. (Give one sentence including one equation for each.)

c. (4 pt) Compute $\prod_{n=0}^{\infty} (1 + x^{(2^n)}).$

HINT: Multiply out the first 3 partial products P_0 , P_1 and P_2 . Then find P_k and P.

d. (2 pt) For which x does this infinite product converge? To what function?