Name__Sec			1-11	/66	
MATH 152 Honors	Final Exam	Fall 2007	12	/12	
Sections 201,202		P. Yasskin	13	/15	
	Multiple Choice: (6 points each)			14	/10
			Total	/103	

1. A 2 meter bar has linear density $\rho=1+x^{3} \mathrm{~kg} / \mathrm{m}$ where x is measured from one end. Find the average density of the bar.
a. $2 \mathrm{~kg} / \mathrm{m}$
b. $3 \mathrm{~kg} / \mathrm{m}$
c. $4.5 \mathrm{~kg} / \mathrm{m}$
d. $5 \mathrm{~kg} / \mathrm{m}$
e. $6 \mathrm{~kg} / \mathrm{m}$
2. A 2 meter bar has linear density $\rho=1+x^{3} \mathrm{~kg} / \mathrm{m}$ where x is measured from one end. Find the center of mass of the bar.
a. $\frac{5}{7} \mathrm{~m}$
b. $\frac{5}{6} \mathrm{~m}$
c. $\frac{6}{5} \mathrm{~m}$
d. $\frac{7}{5} \mathrm{~m}$
e. $\frac{42}{5} \mathrm{~m}$
3. Compute $\int x \arctan x d x$.
a. $\frac{3 x^{2}}{2} \arctan x-\frac{x}{2} \ln \left(x^{2}+1\right)+C$
b. $\frac{3 x^{2}}{2} \arctan x+\frac{x}{2} \ln \left(x^{2}+1\right)+C$
c. $\frac{x^{2}}{2} \arctan x+\frac{3 x}{2} \ln \left(x^{2}+1\right)+C$
d. $\frac{x^{2}}{2} \arctan x-\frac{1}{2} x-\frac{1}{2} \arctan x+C$
e. $\frac{x^{2}}{2} \arctan x-\frac{1}{2} x+\frac{1}{2} \arctan x+C$
4. Find the arclength of the parametric curve $\quad x=t^{4} \quad y=\frac{1}{2} t^{6} \quad$ for $0 \leq t \leq 1$.
a. $\frac{61}{54}$
b. $\frac{16}{9}$
c. $\frac{11}{9}$
d. $\frac{1}{9}$
e. $\frac{1}{54}$
5. Which term appears in the partial fraction expansion of $\frac{4 x^{2}-2 x+2}{(x-1)^{2}\left(x^{2}+1\right)}$?
a. $\frac{-2}{(x-1)^{2}}$
b. $\frac{1}{(x-1)^{2}}$
c. $\frac{2}{(x-1)^{2}}$
d. $\frac{-2}{x-1}$
e. $\frac{2}{x-1}$
6. The base of a solid is the region bounded by the curves $y=x^{2}, y=-x^{2}$ and $x=2$. The cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
a. $\frac{128}{5}$
b. $\frac{32}{5}$
c. $\frac{16}{3}$
d. $\frac{8}{3}$
e. $\frac{16}{15}$
7. Find the solution of the differential equation $\frac{d y}{d x}=x y^{2}+x$ satisfying the initial condition $y(0)=1$.
a. $y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{2}\right)$
b. $y=\tan \left(\frac{x^{2}}{2}+\frac{\pi}{4}\right)$
c. $y=\sin \left(\frac{x^{2}}{2}\right)+1$
d. $y=\tan \left(\frac{x^{2}}{2}\right)+1$
e. $y=\cos \left(\frac{x^{2}}{2}\right)$
8. If $g(x)=\cos \left(x^{2}\right)$, what is $g^{(8)}(0)$, the $8^{\text {th }}$ derivative at zero?

HINT: What is the coefficient of x^{8} in the Maclaurin series for $\cos \left(x^{2}\right)$?
a. $8 \cdot 7 \cdot 6 \cdot 5$
b. $\frac{1}{8 \cdot 7 \cdot 6 \cdot 5}$
c. 4 !
d. $\frac{1}{4!}$
e. $\frac{1}{8!}$
9. Suppose the series $\sum_{n=1}^{\infty} n e^{\left(-n^{2}\right)}$ is approximated by its $9^{\text {th }}$ partial sum $\sum_{n=1}^{9} n e^{\left(-n^{2}\right)}$. Use an integral to bound the error in this approximation.
a. $\frac{1}{2} e^{-64}$
b. $\frac{1}{2} e^{-81}$
c. $\frac{1}{2} e^{-100}$
d. $\frac{1}{2} e^{-121}$
e. $\frac{1}{2} e^{-144}$
10. Find the area of the triangle with vertices $P=(2,-1,3), \quad Q=(1,2,1)$ and $R=(3,1,4)$.
a. $\frac{1}{2} \sqrt{73}$
b. $\sqrt{73}$
c. $\frac{5}{2} \sqrt{3}$
d. $5 \sqrt{3}$
e. $-5 \sqrt{3}$
11. If \vec{u} points North East and \vec{v} points West, in which direction does $\vec{u} \times \vec{v}$ point?
a. North West
b. South
c. South East
d. Up
e. Down
12. (12 points) Compute $\int_{2}^{4} \frac{8}{x^{3} \sqrt{x^{2}-4}} d x$
13. (15 points) The curve $y=x^{2}$ is rotated about the y-axis to form a bowl. If the bowl contains $8 \pi \mathrm{~cm}^{3}$ of water, what is the height of the water in the bowl?
14. (10 points) This question is designed to teach you about infinite products.
a. (2 pt) Define the partial sum, S_{k}, and the sum, S, of an infinite series $\sum_{n=0}^{\infty} a_{n}$. (Give one sentence including one equation for each.)
b. (2 pt) By analogy, define the partial product, P_{k}, and the product, P, of an infinite product $\prod_{n=0}^{\infty} a_{n}$. (Give one sentence including one equation for each.)
c. (4 pt) Compute $\prod_{n=0}^{\infty}\left(1+x\left(2^{n}\right)\right)$.

HINT: Multiply out the first 3 partial products P_{0}, P_{1} and P_{2}. Then find P_{k} and P.
d. (2 pt) For which x does this infinite product converge? To what function?

