Name	Sec		1-11	155
MATH 152 Honors	Final Exam	Fall 2008	12	112
Sections 201,202		P. Yasskin	13	/22
Multiple Choice: (5 points each)			14	/16
			Total	/105

1. Find the average value of $f(x)=\sin x$ on the interval $0 \leq x \leq \pi$.
a. $\frac{1}{\pi}$
b. $\frac{2}{\pi}$
c. $\frac{3}{\pi}$
d. $\frac{1}{2}$
e. $\frac{1}{3}$
2. Compute $\int_{0}^{3} \frac{1}{\left(25-x^{2}\right)^{3 / 2}} d x$.
a. $\frac{4}{15}$
b. $\frac{4}{75}$
c. $\frac{3}{20}$
d. $\frac{3}{100}$
e. $\frac{3}{500}$
3. The region below $y=x^{2}$ for $0 \leq x \leq 2$ is rotated about the y-axis. Find the volume of the solid swept out.
a. 8π
b. 4π
c. $\frac{32 \pi}{5}$
d. $\frac{32 \pi}{3}$
e. $\frac{16 \pi}{3}$
4. Compute $\int \frac{x+2}{x^{3}+x} d x$. HINT: Equate coefficients.
a. $\ln \frac{x^{2}}{\left(x^{2}+1\right)^{2}}+\arctan (x)+C$
b. $\ln \frac{x^{2}}{\left(x^{2}+1\right)^{2}}-\arctan (x)+C$
c. $\ln \left|\frac{x}{x^{2}+1}\right|+\arctan (x)+C$
d. $\ln \left|\frac{x}{x^{2}+1}\right|-\arctan (x)+C$
e. $\ln \frac{x^{2}}{x^{2}+1}+\arctan (x)+C$
5. Which of the following differential equations is NOT separable?
a. $\frac{d y}{d x}=x+x y$
b. $\frac{d y}{d x}=x y+x y^{2}+x^{2} y+x^{2} y^{2}$
c. $\frac{d y}{d x}=\frac{1}{x y}+\frac{1}{x}+\frac{1}{y}$
d. $\frac{d y}{d x}=\frac{x}{y}+x+\frac{1}{y}+1$
e. $\frac{d y}{d x}=\frac{y}{x}-y$
6. Suppose $y=f(x)$ is the solution of the differential equation $\frac{d y}{d x}=x y^{2}+x^{2}$ satisfying the initial condition $f(1)=2$. Find $f^{\prime}(1)$.
a. 1
b. 2
c. 3
d. 4
e. 5
7. Compute $\quad \sum_{n=1}^{\infty}\left(e^{1 / n}-e^{1 /(n+1)}\right)$.
a. e
b. $1-e$
c. $e-e^{2}$
d. $e-1$
e. $e^{2}-e$
8. The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+n}$
a. Converges by the $n^{\text {th }}$-Term Divergence Test.
b. Diverges by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n}$.
c. Diverges by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.
d. Diverges by the Limit Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n}$.
e. Diverges by the Limit Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.
9. The series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$
a. Converges by the Ratio Test.
b. Diverges by the Integral Test.
c. Converges because it is a p-series with $p=2>1$.
d. Converges because it is a p-series with $p=1$.
e. Diverges by the Limit Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
10. Compute $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)-x^{2}}{x^{5}}$
a. $-\frac{1}{3}$
b. $-\frac{1}{6}$
c. 0
d. $\frac{1}{6}$
e. $\frac{1}{3}$
11. Find the volume of the parallelepiped with edge vectors

$$
\vec{a}=(2,1,4), \quad \vec{b}=(0,3,2) \text { and } \vec{c}=(-2,1,3)
$$

a. 42
b. 34
c. 28
d. 21
e. 17

Work Out: (Points indicated. Part credit possible.)
12. (12 points) The curve $x=2 t^{2}, y=t^{3}$ for $0 \leq t \leq 1$ is rotated about the y-axis. Find the surface area of the surface swept out. Don't simplify your numbers.
13. (22 points) A bucket starts out containing 4 liters of salt water with concentration of 60 gm of salt per liter. Salt water is added to the bucket at 3 liters per minute with concentration of 50 gm of salt per liter. The water in the bucket is kept mixed but is leaking out at the rate of 1 liter per minute. (Note the amount of water in the bucket is not constant.)
Let $S(t)$ denote the amount of salt in the bucket at time t.
a. (7 pt) Write a differential equation for $S(t)$ and an initial condition for $S(t)$.

HINT: How much water is in the bucket at time t ?
b. (2 pt) Select one: The differential equation is

```
separable
```linearboth
neither
c. (9 pt) Solve the initial value problem for \(S(t)\).
d. (4 pt) How much salt is in the bucket after 6 minutes? What is the concentration after 6 minutes?
14. (16 points) The "Gaussian bell curve" used in statistics is \(\frac{2}{\sqrt{\pi}} e^{-t^{2}}\) as shown in the graph. The "error function" is its integral:
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\]
which gives the probability that the value of \(t\) is between 0 and \(x\). For this problem we will ignore the coefficient and study the function

\[
f(x)=\int_{0}^{x} e^{-t^{2}} d t
\]
a. (6 pt) Find a Maclaurin series for \(f(x)\) in summation notation.
b. (6 pt) Use the first 3 terms of the Maclaurin series for \(f(x)\) to approximate \(f(1)\).
(\(n=0,1,2\)) Do not simplify. Find a bound on the error in this approximation. Explain why.
c. (4 pt) How many terms of the Maclaurin series for \(f(x)\) would you need to approximate \(f(1)\) to within \(10^{-3}\) ? Why?```

