Name	Sec ID		1-11	/55
MATH 152 Honors	Final Exam	Fall 2008	12	/12
Sections 201,202		P. Yasskin	13	/22
Multiple Choice: (5 points each)			14	/16
			Total	/105

- **1**. Find the average value of $f(x) = \sin x$ on the interval $0 \le x \le \pi$.
 - **a**. $\frac{1}{\pi}$ **b**. $\frac{2}{\pi}$ **c**. $\frac{3}{\pi}$ **d**. $\frac{1}{2}$ **e**. $\frac{1}{3}$
- 2. Compute $\int_{0}^{3} \frac{1}{(25-x^{2})^{3/2}} dx$. a. $\frac{4}{15}$ b. $\frac{4}{75}$ c. $\frac{3}{20}$ d. $\frac{3}{100}$ e. $\frac{3}{500}$

- **3**. The region below $y = x^2$ for $0 \le x \le 2$ is rotated about the *y*-axis. Find the volume of the solid swept out.
 - **a**. 8π
 - **b**. 4π
 - **c**. $\frac{32\pi}{5}$
 - **d**. $\frac{32\pi}{3}$

 - **e**. $\frac{16\pi}{3}$

4. Compute $\int \frac{x+2}{x^3+x} dx$. HINT: Equate coefficients. **a.** $\ln \frac{x^2}{(x^2+1)^2} + \arctan(x) + C$ **b.** $\ln \frac{x^2}{(x^2+1)^2} - \arctan(x) + C$ **c.** $\ln \left| \frac{x}{x^2 + 1} \right| + \arctan(x) + C$ **d.** $\ln \left| \frac{x}{x^2 + 1} \right| - \arctan(x) + C$ **e.** $\ln \frac{x^2}{x^2 + 1} + \arctan(x) + C$

5. Which of the following differential equations is NOT separable?

a.
$$\frac{dy}{dx} = x + xy$$

b.
$$\frac{dy}{dx} = xy + xy^2 + x^2y + x^2y^2$$

c.
$$\frac{dy}{dx} = \frac{1}{xy} + \frac{1}{x} + \frac{1}{y}$$

d.
$$\frac{dy}{dx} = \frac{x}{y} + x + \frac{1}{y} + 1$$

e.
$$\frac{dy}{dx} = \frac{y}{x} - y$$

6. Suppose y = f(x) is the solution of the differential equation $\frac{dy}{dx} = xy^2 + x^2$ satisfying the initial condition f(1) = 2. Find f'(1).

- **a**. 1
- **b**. 2
- **c**. 3
- **d**. 4
- **e**. 5
- 7. Compute $\sum_{n=1}^{\infty} (e^{1/n} e^{1/(n+1)}).$ **a.** e **b.** 1 - e **c.** $e - e^2$
 - **d**. e 1**e**. $e^2 - e$

- 8. The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + n}$
 - **a**. Converges by the n^{th} -Term Divergence Test.
 - **b.** Diverges by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n}$. **c.** Diverges by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$. **d.** Diverges by the Limit Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - **e**. Diverges by the Limit Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

- 9. The series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$
 - a. Converges by the Ratio Test.
 - **b**. Diverges by the Integral Test.
 - **c**. Converges because it is a *p*-series with p = 2 > 1.
 - **d**. Converges because it is a *p*-series with p = 1.
 - **e**. Diverges by the Limit Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

11. Find the volume of the parallelepiped with edge vectors

 $\vec{a} = (2, 1, 4), \quad \vec{b} = (0, 3, 2) \text{ and } \vec{c} = (-2, 1, 3).$

- **a**. 42
- **b**. 34
- **c**. 28
- **d**. 21
- **e**. 17

Work Out: (Points indicated. Part credit possible.)

12. (12 points) The curve $x = 2t^2$, $y = t^3$ for $0 \le t \le 1$ is rotated about the *y*-axis. Find the surface area of the surface swept out. Don't simplify your numbers.

- **13**. (22 points) A bucket starts out containing 4 liters of salt water with concentration of 60 gm of salt per liter. Salt water is added to the bucket at 3 liters per minute with concentration of 50 gm of salt per liter. The water in the bucket is kept mixed but is leaking out at the rate of 1 liter per minute. (Note the amount of water in the bucket is **not** constant.) Let S(t) denote the amount of salt in the bucket at time t.
 - **a**. (7 pt) Write a differential equation for S(t) and an initial condition for S(t). HINT: How much water is in the bucket at time t?

b.	(2 pt) Select one:	The differential equation is		
	□ separable	🗆 linear	□ both	□ neither
С.	(9 pt) Solve the init	tial value problem for $S(t)$.		

d. (4 pt) How much salt is in the bucket after 6 minutes? What is the concentration after 6 minutes?

14. (16 points) The "Gaussian bell curve" used in statistics is

as shown in the graph. The "error function" is its integral:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

which gives the probability that the value of t is between 0 and x. For this problem we will ignore the coefficient and study the function

$$f(x) = \int_0^x e^{-t^2} dt$$

a. (6 pt) Find a Maclaurin series for f(x) in summation notation.

b. (6 pt) Use the first 3 terms of the Maclaurin series for f(x) to approximate f(1). (n = 0, 1, 2) Do not simplify. Find a bound on the error in this approximation. Explain why.

c. (4 pt) How many terms of the Maclaurin series for f(x) would you need to approximate f(1) to within 10^{-3} ? Why?

 $\frac{2}{\sqrt{\pi}}e^{-t^2}$