Name__ Sec		Fall 2008	1-11	155	
MATH 152 Honors	Final Exam		12	112	
Sections 201,202	Solutions	P. Yasskin	13	122	
	Multiple Choice: (5 points each)			14	/16
			Total	/105	

1. Find the average value of $f(x)=\sin x$ on the interval $0 \leq x \leq \pi$.
a. $\frac{1}{\pi}$
b. $\frac{2}{\pi}$ correct choice
c. $\frac{3}{\pi}$
d. $\frac{1}{2}$
e. $\frac{1}{3}$
$f_{\text {ave }}=\frac{1}{\pi} \int_{0}^{\pi} \sin x d x=\left.\frac{1}{\pi}(-\cos x)\right|_{0} ^{\pi}=\frac{1}{\pi}(--1--1)=\frac{2}{\pi}$
2. Compute $\int_{0}^{3} \frac{1}{\left(25-x^{2}\right)^{3 / 2}} d x$.
a. $\frac{4}{15}$
b. $\frac{4}{75}$
c. $\frac{3}{20}$
d. $\frac{3}{100}$ correct choice
e. $\frac{3}{500}$

Let $\quad x=5 \sin \theta$. Then $d x=5 \cos \theta d \theta$.
$\int \frac{1}{\left(25-x^{2}\right)^{3 / 2}} d x=\int \frac{5 \cos \theta}{\left(25-25 \sin ^{2} \theta\right)^{3 / 2}} d \theta=\frac{1}{25} \int \frac{\cos \theta}{\cos ^{3} \theta} d \theta=\frac{1}{25} \int \sec ^{2} \theta d \theta=\frac{1}{25} \tan \theta+C$ $\sin \theta=\frac{x}{5} \quad \cos \theta=\sqrt{1-\left(\frac{x}{5}\right)^{2}}=\frac{\sqrt{25-x^{2}}}{5} \quad \tan \theta=\frac{x}{\sqrt{25-x^{2}}}$
$\int_{0}^{3} \frac{1}{\left(25-x^{2}\right)^{3 / 2}} d x=\left.\frac{1}{25} \frac{x}{\sqrt{25-x^{2}}}\right|_{0} ^{3}=\frac{3}{25 \cdot 4}=\frac{3}{100}$
3. The region below $y=x^{2}$ for $0 \leq x \leq 2$ is rotated about the y-axis.

Find the volume of the solid swept out.
a. 8π correct choice
b. 4π
c. $\frac{32 \pi}{5}$
d. $\frac{32 \pi}{3}$
e. $\frac{16 \pi}{3}$
x-integral cylinders $\quad V=\int_{0}^{2} 2 \pi r h d x=\int_{0}^{2} 2 \pi x x^{2} d x=\left.2 \pi \frac{x^{4}}{4}\right|_{0} ^{2}=8 \pi$
4. Compute $\int \frac{x+2}{x^{3}+x} d x$. HINT: Equate coefficients.
a. $\ln \frac{x^{2}}{\left(x^{2}+1\right)^{2}}+\arctan (x)+C$
b. $\ln \frac{x^{2}}{\left(x^{2}+1\right)^{2}}-\arctan (x)+C$
c. $\ln \left|\frac{x}{x^{2}+1}\right|+\arctan (x)+C$
d. $\ln \left|\frac{x}{x^{2}+1}\right|-\arctan (x)+C$
e. $\ln \frac{x^{2}}{x^{2}+1}+\arctan (x)+C \quad$ correct choice
$\frac{x+2}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1} \quad x+2=A\left(x^{2}+1\right)+(B x+C) x=(A+B) x^{2}+C x+A$
$A=2 \quad C=1 \quad A+B=0 \quad B=-2$
$\int \frac{x+2}{x^{3}+x} d x=\int \frac{2}{x}+\frac{-2 x+1}{x^{2}+1} d x=\int \frac{2}{x}-\frac{2 x}{x^{2}+1}+\frac{1}{x^{2}+1} d x$
$=2 \ln |x|-\ln \left(x^{2}+1\right)+\arctan (x)+C=\ln \frac{x^{2}}{x^{2}+1}+\arctan (x)+C$
5. Which of the following differential equations is NOT separable?
a. $\frac{d y}{d x}=x+x y$
b. $\frac{d y}{d x}=x y+x y^{2}+x^{2} y+x^{2} y^{2}$
c. $\frac{d y}{d x}=\frac{1}{x y}+\frac{1}{x}+\frac{1}{y} \quad$ correct choice
d. $\frac{d y}{d x}=\frac{x}{y}+x+\frac{1}{y}+1$
e. $\frac{d y}{d x}=\frac{y}{x}-y$
$x+x y-x(1+y) \quad x y+x y^{2}+x^{2} y+x^{2} y^{2}=\left(x+x^{2}\right)\left(y+y^{2}\right)$
$\frac{x}{y}+x+\frac{1}{y}+1=(x+1)\left(\frac{1}{y}+1\right) \quad \frac{y}{x}-y=y\left(\frac{1}{x}-1\right)$
6. Suppose $y=f(x)$ is the solution of the differential equation $\frac{d y}{d x}=x y^{2}+x^{2}$ satisfying the initial condition $f(1)=2$. Find $f^{\prime}(1)$.
a. 1
b. 2
c. 3
d. 4
e. 5
correct choice
$f^{\prime}(x)=\frac{d y}{d x}=x y^{2}+x^{2} \quad$ When $x=1$, we have $y=f(1)=2 . \quad$ So $f^{\prime}(1)=(1)(2)^{2}+(1)^{2}=5$
7. Compute $\quad \sum_{n=1}^{\infty}\left(e^{1 / n}-e^{1 /(n+1)}\right)$.
a. e
b. $1-e$
c. $e-e^{2}$
d. $e-1$ correct choice
e. $e^{2}-e$
$S_{k}=\sum_{n=1}^{k}\left(e^{1 / n}-e^{1 /(n+1)}\right)=\left(e-e^{1 / 2}\right)+\left(e^{1 / 2}-e^{1 / 3}\right)+\cdots+\left(e^{1 / k}-e^{1 /(k+1)}\right)=e-e^{1 /(k+1)}$
$S=\lim _{n \rightarrow \infty} S_{k}=\lim _{n \rightarrow \infty}\left(e-e^{1 /(k+1)}\right)=e-e^{0}=e-1$
8. The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+n}$
a. Converges by the $n^{\text {th }}$-Term Divergence Test.
b. Diverges by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n}$.
c. Diverges by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.
d. Diverges by the Limit Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n}$. correct choice
e. Diverges by the Limit Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.
$n^{\text {th }}$-Term Divergence Test fails. $\quad \frac{1}{\sqrt{n}+n}<\frac{1}{n} \leq \frac{1}{\sqrt{n}} \quad \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}+n} \frac{\sqrt{n}}{1}=0$
$\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}+n} \frac{n}{1}=1 \quad$ and $\quad \sum_{n=1}^{\infty} \frac{1}{n}$ is the harmonic series which is divergent.
9. The series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$
a. Converges by the Ratio Test.
b. Diverges by the Integral Test. correct choice
c. Converges because it is a p-series with $p=2>1$.
d. Converges because it is a p-series with $p=1$.
e. Diverges by the Limit Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
$\frac{n}{n^{2}+1}$ is positive and decreasing, and $\int_{1}^{\infty} \frac{n}{n^{2}+1} d n=\left.\frac{1}{2} \ln \left(n^{2}+1\right)\right|_{1} ^{\infty}=\infty$ Ratio Test fails. $\quad \sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ is not a p-series. $\quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.
10. Compute $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)-x^{2}}{x^{5}}$
a. $-\frac{1}{3}$
b. $-\frac{1}{6}$
c. 0 correct choice
d. $\frac{1}{6}$
e. $\frac{1}{3}$
$\sin (t)=t-\frac{t^{3}}{3!}+\cdots \quad \sin \left(x^{2}\right)=x^{2}-\frac{x^{6}}{3!}+\cdots \quad \sin \left(x^{2}\right)-x^{2}=-\frac{x^{6}}{3!}+\cdots$
$\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)-x^{2}}{x^{5}}=\lim _{x \rightarrow 0} \frac{-\frac{x^{6}}{3!}+\cdots}{x^{5}}=\lim _{x \rightarrow 0}-\frac{x}{3!}+\cdots=0$
11. Find the volume of the parallelepiped with edge vectors

$$
\vec{a}=(2,1,4), \quad \vec{b}=(0,3,2) \text { and } \vec{c}=(-2,1,3) .
$$

a. 42
b. 34 correct choice
c. 28
d. 21
e. 17

The is the absolute value of the triple product $\vec{a} \times \vec{b} \cdot \vec{c}$ which is a determinant:
$V=|\vec{a} \times \vec{b} \cdot \vec{c}|=\| \begin{array}{ccc}2 & 1 & 4 \\ 0 & 3 & 2 \\ -2 & 1 & 3\end{array}| |=|2(9-2)-1(0+4)+4(0+6)|=34$

Work Out: (Points indicated. Part credit possible.)
12. (12 points) The curve $x=2 t^{2}, y=t^{3}$ for $0 \leq t \leq 1$ is rotated about the y-axis. Find the surface area of the surface swept out. Don't simplify your numbers.

$$
\begin{aligned}
& \frac{d x}{d t}=4 t \quad \frac{d y}{d t}=3 t^{2} \quad \text { The radius of revolution is } r=x=t^{2} . \\
& A=\int 2 \pi r d s=\int_{0}^{1} 2 \pi x \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{0}^{1} 2 \pi 2 t^{2} \sqrt{16 t^{2}+9 t^{4}} d t=\int_{0}^{1} 4 \pi t^{3} \sqrt{16+9 t^{2}} d t \\
& u=16+9 t^{2} \quad d u=18 t d t \quad \frac{d u}{18}=t d t \quad t^{2}=\frac{u-16}{9} \\
& \begin{aligned}
& A=4 \pi \int_{16}^{25} \frac{u-16}{9} \sqrt{u} \frac{d u}{18}=\frac{2 \pi}{81} \int_{16}^{25}\left(u^{3 / 2}-16 u^{1 / 2}\right) d u=\frac{2 \pi}{81}\left[\frac{2 u^{5 / 2}}{5}-\frac{32 u^{3 / 2}}{3}\right]_{16}^{25} \\
& \quad=\frac{2 \pi}{81}\left(\frac{2(5)^{5}}{5}-\frac{32(5)^{3}}{3}\right)-\frac{2 \pi}{81}\left(\frac{2(4)^{5}}{5}-\frac{32(4)^{3}}{3}\right)=\frac{5692}{1215} \pi
\end{aligned}
\end{aligned}
$$

13. (22 points) A bucket starts out containing 4 liters of salt water with concentration of 60 gm of salt per liter. Salt water is added to the bucket at 3 liters per minute with concentration of 50 gm of salt per liter. The water in the bucket is kept mixed but is leaking out at the rate of 1 liter per minute. (Note the amount of water in the bucket is not constant.)
Let $S(t)$ denote the amount of salt in the bucket at time t.
a. (7 pt) Write a differential equation for $S(t)$ and an initial condition for $S(t)$.

HINT: How much water is in the bucket at time t ?
The volume of water at time t is $V=(4+2 t) \mathrm{L}$.

$$
\frac{d S}{d t}=\underbrace{\frac{50 \mathrm{gm}}{\mathrm{~L}} \frac{3 \mathrm{~L}}{\mathrm{~min}}}_{\mathbb{N}}-\underbrace{\frac{S(t) \mathrm{gm}}{(4+2 t) \mathrm{L} \mathrm{~min}} \frac{1 \mathrm{~L}}{(4+}}_{\text {OUT }}=150-\frac{S(t)}{(4+2 t)} \quad S(0)=\frac{60 \mathrm{gm}}{\mathrm{~L}} \cdot 4 \mathrm{~L}=240
$$

b. (2 pt) Select one: The differential equation is
separable

- linear
both
neither
c. (9 pt) Solve the initial value problem for $S(t)$.

$$
\frac{d S}{d t}+\frac{S(t)}{(4+2 t)}=150
$$

$P(t)=\frac{1}{(4+2 t)} \quad \int P(t) d t=\int \frac{1}{(4+2 t)} d t=\frac{1}{2} \ln (4+2 t)=\ln \sqrt{4+2 t}$
$I=e^{\int P(t) d t}=e^{\ln \sqrt{4+2 t}}=\sqrt{4+2 t}$
$\sqrt{4+2 t} \frac{d S}{d t}+\frac{S(t)}{\sqrt{4+2 t}}=150 \sqrt{4+2 t} \quad \frac{d}{d t}(\sqrt{4+2 t} S)=150 \sqrt{4+2 t}$
$\sqrt{4+2 t} S=\int 150 \sqrt{4+2 t} d t=50(4+2 t)^{3 / 2}+C$
At $t=0$, we have $S=240$. So $\sqrt{4} 240=50(4)^{3 / 2}+C \quad C=480-400=80$
$\sqrt{4+2 t} S=50(4+2 t)^{3 / 2}+80$

$$
S=50(4+2 t)+\frac{80}{\sqrt{4+2 t}}=200+100 t+\frac{80}{\sqrt{4+2 t}}
$$

d. (4 pt) How much salt is in the bucket after 6 minutes?

What is the concentration after 6 minutes?
$S(6)=200+100 \cdot 6+\frac{80}{\sqrt{4+2 \cdot 6}}=820 \mathrm{gm}$
Concentration $=\frac{S(6)}{V(6)}=\frac{820}{16}=\frac{205}{4}=51.25 \frac{\mathrm{gm}}{\mathrm{L}}$
14. (16 points) The "Gaussian bell curve" used in statistics is $\frac{2}{\sqrt{\pi}} e^{-t^{2}}$ as shown in the graph. The "error function" is its integral:

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

which gives the probability that the value of t is between 0 and x. For this problem we will ignore the coefficient and study the function

$$
f(x)=\int_{0}^{x} e^{-t^{2}} d t
$$

a. (6 pt) Find a Maclaurin series for $f(x)$ in summation notation.

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad e^{-t^{2}}=\sum_{n=0}^{\infty} \frac{\left(-t^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{n!} \\
& f(x)=\int_{0}^{x} e^{-t^{2}} d t=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{x} t^{2 n} d t=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{n!(2 n+1)}
\end{aligned}
$$

b. (6 pt) Use the first 3 terms of the Maclaurin series for $f(x)$ to approximate $f(1)$.
($n=0,1,2$) Do not simplify. Find a bound on the error in this approximation. Explain why.

$$
f(x) \approx \sum_{n=0}^{2} \frac{(-1)^{n} x^{2 n+1}}{n!(2 n+1)}=x-\frac{x^{3}}{3}+\frac{x^{5}}{10} \quad f(1) \approx 1-\frac{1}{3}+\frac{1}{10} \approx 0.76667
$$

Since this series is alternating, the error is bounded by the absolute value of the next term.

$$
|E|<\left|a_{3}\right|=\left|\frac{(-1)^{3} x^{7}}{3!(7)}\right|_{x=0.1}=\frac{1}{42}=.23810 \times 10^{-1}
$$

c. (4 pt) How many terms of the Maclaurin series for $f(x)$ would you need to approximate $f(1)$ to within 10^{-3} ? Why?
$|E|<\left|a_{n}\right|=\left|\frac{(-1)^{n} x^{2 n+1}}{n!(2 n+1)}\right|_{x=1}=\frac{1}{n!(2 n+1)}<10^{-3}$
$n=4: \quad|E|<\frac{1}{4!(9)}=\frac{1}{24 \cdot 9}<10^{-2}$
$n=5: \quad|E|<\frac{1}{5!(11)}=\frac{1}{120 \cdot 11}<10^{-3} \quad$ So 5 terms are needed.

