Solutions to MATH 152 Fall 2008 Exam 3A

1. B lim (a2 —3b,) = ( lim a,)* —3 lim b, = 2% — 3(-3) = 13.
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. C Apply L'Hospital’s Rule to lim 2T jim z =g
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3. D Complete the square: 22 + (y? =2y + 1)+ 22 =1+1; 22 + (y — 1) + 22 =2, 50 72 = 2 and
=2

4. C Using the Comparison Test. (D) is NOT necessarily true because lim a, = 0 does not nec-
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essarily mean that E an is convergent.
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5. B Since lim
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terms of the series do not approach 0, which means the series diverges by the Test for Divergence.

o 1= 1, the sequence (—1)" alternates between —1 and 1, therefore the
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6. B Let a,, = —. Then lim — = 1, which means the series E b, and E an, either both converge
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or both diverge. Since Z ay, diverges (by Integral Test or P-Test), Z by, diverges by the Limit
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Comparison Test.
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8. C Since the terms of both series approach zero, both series converge by the Alternating Series
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Test. To test absolute convergence, we look at (IA)Z 7 and (IIA)Z i Both are P-
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series; in (IA), P < 1so the series diverges, and in (ITA), P > 1 so the series converges. Therefore,
series (I) converges but not absolutely, and series (II) converges absolutely.
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9. B The series can be written as Z (g) <§> , which is a geometric series with a = 3 and
n=1
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r= 3 The sum of the series is =4.
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10. C The Maclaurin series for cos x is Z u
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So the Maclaurin series for cos(z?) is
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11. (a) AB=<1,2,2> BC=<0,-1,1>. AB-BC = (1)(0)+ (2)(=1) 4+ (2)(1) = 0, so the sides
are perpendicular to each other.
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(b) [AB| = V12+22+22 = 3, [BC| = \/02 + (—1)2 + 12 = /2, so the area is 5 AB|BC| =
3v2
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F1) = 4 116 = 8 150 [1(1) = 0 ') = 2 s0 [1(-1) = 2 7(0) = B o
f"(—=1) = —48. The third degree Taylor Polynomial is f(—1) 4+ f= 1)(:10 +1)+ /1= )(x +
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1)2 + / é!_l)(x +12 =4—-9(+1)+12(x+1)* - 8(x + 1)
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. Therefore, subtracting the first term of the series gives us
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(a) Applying the Ratio Test gives us absolute convergence when lim 2(;1_71;1:1 = lim | | vn
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and divergence when the limit is > 1. Since the second fraction approaches 1, we have ab-
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solute convergence when < 1, |x = 1] < 2 which makes the radius of convergence
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(b) The series converges when —2 < z—1 < 2, —1 < = < 3. To find the interval of convergence,
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test the endpoints: When x = —1, the series becomes E — = E ~——~—, which con-
—2"/n vn

o0 n
verges by the Alternating Series test. Whne z = 3, the series becomes — = —_—,
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which diverges by the P-test or integral test. Therefore, the interval of convergence is

—-1<z<3.
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(c) Since the series is alternating | S—Ss| < |a4| = CR S R (§> =370i (5) )




