Solutions to MATH 152 Fall 2008 Exam 3A

1. B $\lim _{n \rightarrow \infty}\left(a_{n}^{2}-3 b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)^{2}-3 \lim _{n \rightarrow \infty} b_{n}=2^{2}-3(-3)=13$.
2. C Apply L'Hospital's Rule to $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=0$
3. D Complete the square: $x^{2}+\left(y^{2}-2 y+1\right)+z^{2}=1+1 ; x^{2}+(y-1)^{2}+z^{2}=2$, so $r^{2}=2$ and $r=\sqrt{2}$.
4. C Using the Comparison Test. (D) is NOT necessarily true because $\lim _{n \rightarrow \infty} a_{n}=0$ does not necessarily mean that $\sum_{n=1}^{\infty} a_{n}$ is convergent.
5. B Since $\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$, the sequence $(-1)^{n} \frac{n}{n+1}$ alternates between -1 and 1 , therefore the terms of the series do not approach 0 , which means the series diverges by the Test for Divergence.
6. B Let $a_{n}=\frac{1}{n}$. Then $\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=1$, which means the series $\sum_{n=1}^{\infty} b_{n}$ and $\sum_{n=1}^{\infty} a_{n}$ either both converge or both diverge. Since $\sum_{n=1}^{\infty} a_{n}$ diverges (by Integral Test or P-Test), $\sum_{n=1}^{\infty} b_{n}$ diverges by the Limit Comparison Test.
7. A $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}=\sum_{n=1}^{\infty}\left(\frac{1}{n+2}-\frac{1}{n+3}\right)$, which is a Telescoping Series: $s_{N}=\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)$ as $N \rightarrow \infty$.
8. C Since the terms of both series approach zero, both series converge by the Alternating Series Test. To test absolute convergence, we look at (IA) $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 4}}$ and (IIA) $\sum_{n=1}^{\infty} \frac{1}{n^{4 / 3}}$. Both are P series; in (IA), $P<1$ so the series diverges, and in (IIA), $P>1$ so the series converges. Therefore, series (I) converges but not absolutely, and series (II) converges absolutely.
9. B The series can be written as $\sum_{n=1}^{\infty}\left(\frac{4}{3}\right)\left(\frac{2}{3}\right)^{n-1}$, which is a geometric series with $a=\frac{4}{3}$ and $r=\frac{2}{3}$. The sum of the series is $\frac{\frac{4}{3}}{1-\frac{2}{3}}=4$.
10. C The Maclaurin series for $\cos x$ is $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$. So the Maclaurin series for $\cos \left(x^{2}\right)$ is $\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n}}{(2 n)!}$.
11. (a) $\overline{\mathbf{A B}}=<1,2,2\rangle, \overline{\mathbf{B C}}=\langle 0,-1,1\rangle . \overline{\mathbf{A B}} \cdot \overline{\mathbf{B C}}=(1)(0)+(2)(-1)+(2)(1)=0$, so the sides are perpendicular to each other.
(b) $|\overline{\mathbf{A B}}|=\sqrt{1^{2}+2^{2}+2^{2}}=3,|\overline{\mathbf{B C}}|=\sqrt{0^{2}+(-1)^{2}+1^{2}}=\sqrt{2}$, so the area is $\frac{1}{2}|\overline{\mathbf{A B}}||\overline{\mathbf{B C}}|=$ $\frac{3 \sqrt{2}}{2}$.
12. $f(-1)=4 ; f^{\prime}(x)=8 x^{3}-1$, so $f^{\prime}(-1)=-9 ; f^{\prime \prime}(x)=24 x^{2}$, so $f^{\prime \prime}(-1)=24 ; f^{\prime \prime \prime}(x)=48 x$, so $f^{\prime \prime \prime}(-1)=-48$. The third degree Taylor Polynomial is $f(-1)+\frac{f^{\prime}(-1)}{1!}(x+1)+\frac{f^{\prime \prime}(-1)}{2!}(x+$ $1)^{2}+\frac{f^{\prime \prime \prime}(-1)}{3!}(x+1)^{3}=4-9(x+1)+12(x+1)^{2}-8(x+1)^{3}$
13. $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, so $e^{-1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$. Therefore, subtracting the first term of the series gives us $e^{-1}-1=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$.
14. (a) Applying the Ratio Test gives us absolute convergence when $\lim _{n \rightarrow \infty}\left|\frac{\frac{(x-1)^{n+1}}{2^{n+1} \sqrt{n+1}}}{\frac{(x-1)^{n}}{2^{n} \sqrt{n}}}\right|=\lim _{n \rightarrow \infty} \frac{|x-1|}{2} \cdot \frac{\sqrt{n}}{\sqrt{n+1}}<1$ and divergence when the limit is >1. Since the second fraction approaches 1 , we have absolute convergence when $\frac{|x-1|}{2}<1,|x-1|<2$ which makes the radius of convergence 2.
(b) The series converges when $-2<x-1<2,-1<x<3$. To find the interval of convergence, test the endpoints: When $x=-1$, the series becomes $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{2^{n} \sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$, which converges by the Alternating Series test. Whne $x=3$, the series becomes $\sum_{n=1}^{\infty} \frac{2^{n}}{2^{n} \sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, which diverges by the P-test or integral test. Therefore, the interval of convergence is $-1 \leq x<3$.
15. (a) $\int S(x) d x=\int \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)!} x^{2 n} d x=\sum_{n=1}^{\infty} \int \frac{(-1)^{n+1}}{(2 n+1)!} x^{2 n} d x=C+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)(2 n+1)!} x^{2 n+1}$
(b) $\int_{0}^{1 / 2} S(x) d x=\left.\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)(2 n+1)!} x^{2 n+1}\right|_{0} ^{1 / 2}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)(2 n+1)!}\left(\frac{1}{2}\right)^{2 n+1}$.
(c) Since the series is alternating $\left|S-S_{3}\right| \leq\left|a_{4}\right|=\frac{1}{(2 \cdot 4+1)(2 \cdot 4+1)!}\left(\frac{1}{2}\right)^{2 \cdot 4+1}=\frac{1}{9 \cdot 9!}\left(\frac{1}{2}\right)^{9}$.
