Solutions to MATH 152 Fall 2008 Exam 3B

- 1. A $\lim_{n \to \infty} (a_n^2 3b_n) = (\lim_{n \to \infty} a_n)^2 3 \lim_{n \to \infty} b_n = 2^2 + 3(-3) = -5.$
- 2. E Apply L'Hospital's Rule to $\lim_{x \to \infty} \frac{x}{\ln x} = \lim_{x \to \infty} \frac{1}{\frac{1}{x}} = \infty$
- 3. E Complete the square: $(x^2 2x + 1) + y^2 + z^2 = 2 + 1$; $(x 1)^2 + y^2 + z^2 = 3$, so $r^2 = 3$ and $r = \sqrt{3}$.
- 4. **B** Using the Comparison Test. (D) is NOT necessarily true because $\lim_{n \to \infty} a_n = 0$ does not necessarily mean that $\sum_{n=1}^{\infty} a_n$ is convergent.
- 5. A Since $\lim_{n \to \infty} \frac{n}{n+1} = 1$, the sequence $(-1)^n \frac{n}{n+1}$ alternates between -1 and 1, therefore the terms of the series do not approach 0, which means the series diverges by the Test for Divergence.
- 6. **D** Let $a_n = \frac{1}{n}$. Then $\lim_{n \to \infty} \frac{b_n}{a_n} = 1$, which means the series $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} a_n$ either both converge or both diverge. Since $\sum_{n=1}^{\infty} a_n$ diverges (by Integral Test or P-Test), $\sum_{n=1}^{\infty} b_n$ diverges by the Limit Comparison Test.
- 7. **B** $\sum_{n=1}^{\infty} \frac{1}{(n+3)(n+4)} = \sum_{n=1}^{\infty} \left(\frac{1}{n+3} \frac{1}{n+4}\right)$, which is a Telescoping Series: $s_N = \left(\frac{1}{4} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \left(\frac{1}{6} - \frac{1}{7}\right) + \dots + \left(\frac{1}{N+3} - \frac{1}{N+4}\right) = \frac{1}{4}$ as $N \to \infty$.
- 8. B Since the terms of both series approach zero, both series converge by the Alternating Series Test. To test absolute convergence, we look at $(IA)\sum_{n=1}^{\infty}\frac{1}{n^{4/3}}$ and $(IIA)\sum_{n=1}^{\infty}\frac{1}{n^{3/4}}$. Both are *P*-series; in (IA), P > 1so the series converges, and in (IIA), P < 1 so the series diverges. Therefore, series (I) converges absolutely, and series (II) converges but not absolutely.
- 9. A The series can be written as $\sum_{n=1}^{\infty} \left(\frac{2}{9}\right) \left(\frac{2}{3}\right)^{n-1}$, which is a geometric series with $a = \frac{2}{9}$ and $r = \frac{2}{3}$. The sum of the series is $\frac{\frac{2}{9}}{1-\frac{2}{3}} = \frac{2}{3}$.

10. **E** The Maclaurin series for $\cos x$ is $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$. So the Maclaurin series for $\cos(x^2)$ is $\sum_{n=0}^{\infty} \frac{(-1)^n (x^2)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{(2n)!}.$

- 11. (a) $\overline{\mathbf{AB}} = \langle 2, 1, -2 \rangle, \overline{\mathbf{BC}} = \langle 1, 0, 1 \rangle$. $\overline{\mathbf{AB}} \cdot \overline{\mathbf{BC}} = (2)(1) + (1)(0) + (-2)(1) = 0$, so the sides are perpendicular to each other.
 - (b) $|\overline{\mathbf{AB}}| = \sqrt{2^2 + 1^2 + (-2)^2} = 3$, $|\overline{\mathbf{BC}}| = \sqrt{1^2 + 0 + 1^2} = \sqrt{2}$, so the area is $\frac{1}{2}|\overline{\mathbf{AB}}||\overline{\mathbf{BC}}| = \frac{3\sqrt{2}}{2}$.

12. $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, so $e^{-1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$. Therefore, subtracting the first term of the series gives us $e^{-1} - 1 = \sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$

13. f(-1) = 0; $f'(x) = 8x^3 + 1$, so f'(-1) = -7; $f''(x) = 24x^2$, so f''(-1) = 24; f'''(x) = 48x, so f'''(-1) = -48. The third degree Taylor Polynomial is $f(-1) + \frac{f'(-1)}{1!}(x+1) + \frac{f''(-1)}{2!}(x+1)^2 + \frac{f'''(-1)}{3!}(x+1)^3 = -7(x+1) + 12(x+1)^2 - 8(x+1)^3$.

- 14. (a) Applying the Ratio Test gives us absolute convergence when $\lim_{n \to \infty} \left| \frac{\frac{(x-1)^{n+1}}{3^{n+1}\sqrt{n+1}}}{\frac{(x-1)^n}{3^n\sqrt{n}}} \right| = \lim_{n \to \infty} \frac{|x-1|}{3} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} < 1$ and divergence when the limit is > 1. Since the second fraction approaches 1, we have absolute convergence when $\frac{|x-1|}{3} < 1$, |x-1| < 3 which makes the radius of convergence 3.
 - (b) The series converges when -3 < x 1 < 3, -2 < x < 4. To find the interval of convergence, test the endpoints: When x = -2, the series becomes $\sum_{n=1}^{\infty} \frac{(-3)^n}{3^n \sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$, which converges by the Alternating Series test. When x = 4, the series becomes $\sum_{n=1}^{\infty} \frac{3^n}{3^n \sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, which diverges by the P-test or integral test. Therefore, the interval of convergence is $-2 \le x < 4$.

15. (a)
$$\int S(x) \, dx = \int \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!} x^{2n} \, dx = \sum_{n=1}^{\infty} \int \frac{(-1)^{n+1}}{(2n+1)!} x^{2n} \, dx = C + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n+1)(2n+1)!} x^{2n+1}$$
(b)
$$\int_{0}^{1/2} S(x) \, dx = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n+1)(2n+1)!} x^{2n+1} \Big|_{0}^{1/2} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n+1)(2n+1)!} \left(\frac{1}{2}\right)^{2n+1}.$$
(c) Since the series is alternating $|S - S_3| \le |a_4| = \frac{1}{(2 \cdot 4 + 1)(2 \cdot 4 + 1)!} \left(\frac{1}{2}\right)^{2 \cdot 4 + 1} = \frac{1}{9 \cdot 9!} \left(\frac{1}{2}\right)^9.$