Solutions to MATH 152 Fall 2008 Exam 3B

1. A $\lim _{n \rightarrow \infty}\left(a_{n}^{2}-3 b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)^{2}-3 \lim _{n \rightarrow \infty} b_{n}=2^{2}+3(-3)=-5$.
2. E Apply L'Hospital's Rule to $\lim _{x \rightarrow \infty} \frac{x}{\ln x}=\lim _{x \rightarrow \infty} \frac{1}{\frac{1}{x}}=\infty$
3. E Complete the square: $\left(x^{2}-2 x+1\right)+y^{2}+z^{2}=2+1 ;(x-1)^{2}+y^{2}+z^{2}=3$, so $r^{2}=3$ and $r=\sqrt{3}$.
4. B Using the Comparison Test. (D) is NOT necessarily true because $\lim _{n \rightarrow \infty} a_{n}=0$ does not necessarily mean that $\sum_{n=1}^{\infty} a_{n}$ is convergent.
5. A Since $\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$, the sequence $(-1)^{n} \frac{n}{n+1}$ alternates between -1 and 1 , therefore the terms of the series do not approach 0 , which means the series diverges by the Test for Divergence.
6. D Let $a_{n}=\frac{1}{n}$. Then $\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=1$, which means the series $\sum_{n=1}^{\infty} b_{n}$ and $\sum_{n=1}^{\infty} a_{n}$ either both converge or both diverge. Since $\sum_{n=1}^{\infty} a_{n}$ diverges (by Integral Test or P-Test), $\sum_{n=1}^{\infty} b_{n}$ diverges by the Limit Comparison Test.
7. B $\sum_{n=1}^{\infty} \frac{1}{(n+3)(n+4)}=\sum_{n=1}^{\infty}\left(\frac{1}{n+3}-\frac{1}{n+4}\right)$, which is a Telescoping Series: $s_{N}=\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\cdots+\left(\frac{1}{N+3}-\frac{1}{N+4}\right)=\frac{1}{4}$ as $N \rightarrow \infty$.
8. B Since the terms of both series approach zero, both series converge by the Alternating Series Test. To test absolute convergence, we look at (IA) $\sum_{n=1}^{\infty} \frac{1}{n^{4 / 3}}$ and (IIA) $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 4}}$. Both are P series; in (IA), $P>1$ so the series converges, and in (IIA), $P<1$ so the series diverges. Therefore, series (I) converges absolutely, and series (II) converges but not absolutely.
9. A The series can be written as $\sum_{n=1}^{\infty}\left(\frac{2}{9}\right)\left(\frac{2}{3}\right)^{n-1}$, which is a geometric series with $a=\frac{2}{9}$ and $r=\frac{2}{3}$. The sum of the series is $\frac{\frac{2}{9}}{1-\frac{2}{3}}=\frac{2}{3}$.
10. E The Maclaurin series for $\cos x$ is $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$. So the Maclaurin series for $\cos \left(x^{2}\right)$ is $\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n}}{(2 n)!}$.
11. (a) $\overline{\mathbf{A B}}=<2,1,-2\rangle, \overline{\mathbf{B C}}=<1,0,1>\cdot \overline{\mathbf{A B}} \cdot \overline{\mathbf{B C}}=(2)(1)+(1)(0)+(-2)(1)=0$, so the sides are perpendicular to each other.
(b) $|\overline{\mathbf{A B}}|=\sqrt{2^{2}+1^{2}+(-2)^{2}}=3,|\overline{\mathbf{B C}}|=\sqrt{1^{2}+0+1^{2}}=\sqrt{2}$, so the area is $\frac{1}{2}|\overline{\mathbf{A B}}||\overline{\mathbf{B C}}|=$ $\frac{3 \sqrt{2}}{2}$.
12. $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, so $e^{-1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$. Therefore, subtracting the first term of the series gives us $e^{-1}-1=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$
13. $f(-1)=0 ; f^{\prime}(x)=8 x^{3}+1$, so $f^{\prime}(-1)=-7 ; f^{\prime \prime}(x)=24 x^{2}$, so $f^{\prime \prime}(-1)=24 ; f^{\prime \prime \prime}(x)=48 x$, so $f^{\prime \prime \prime}(-1)=-48$. The third degree Taylor Polynomial is $f(-1)+\frac{f^{\prime}(-1)}{1!}(x+1)+\frac{f^{\prime \prime}(-1)}{2!}(x+$ $1)^{2}+\frac{f^{\prime \prime \prime}(-1)}{3!}(x+1)^{3}=-7(x+1)+12(x+1)^{2}-8(x+1)^{3}$.
14. (a) Applying the Ratio Test gives us absolute convergence when $\lim _{n \rightarrow \infty}\left|\frac{\frac{(x-1)^{n+1}}{3^{n+1} \sqrt{n+1}}}{\frac{(x-1)^{n}}{3^{n} \sqrt{n}}}\right|=\lim _{n \rightarrow \infty} \frac{|x-1|}{3} \cdot \frac{\sqrt{n}}{\sqrt{n+1}}<1$ and divergence when the limit is >1. Since the second fraction approaches 1 , we have absolute convergence when $\frac{|x-1|}{3}<1,|x-1|<3$ which makes the radius of convergence 3.
(b) The series converges when $-3<x-1<3,-2<x<4$. To find the interval of convergence, test the endpoints: When $x=-2$, the series becomes $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{3^{n} \sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$, which converges by the Alternating Series test. When $x=4$, the series becomes $\sum_{n=1}^{\infty} \frac{3^{n}}{3^{n} \sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, which diverges by the P-test or integral test. Therefore, the interval of convergence is $-2 \leq x<4$.
15. (a) $\int S(x) d x=\int \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)!} x^{2 n} d x=\sum_{n=1}^{\infty} \int \frac{(-1)^{n+1}}{(2 n+1)!} x^{2 n} d x=C+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)(2 n+1)!} x^{2 n+1}$
(b) $\int_{0}^{1 / 2} S(x) d x=\left.\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)(2 n+1)!} x^{2 n+1}\right|_{0} ^{1 / 2}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)(2 n+1)!}\left(\frac{1}{2}\right)^{2 n+1}$.
(c) Since the series is alternating $\left|S-S_{3}\right| \leq\left|a_{4}\right|=\frac{1}{(2 \cdot 4+1)(2 \cdot 4+1)!}\left(\frac{1}{2}\right)^{2 \cdot 4+1}=\frac{1}{9 \cdot 9!}\left(\frac{1}{2}\right)^{9}$.
