Name	Sec	1-15	/60
(Print)	First Last	16	/12
Signature		17	/12
MATH 152 Honors	FINAL EXAM Spring 2012	18	/12
Sections 201-202 P. Yasskin		19	/12
Multiple Choice: (15 problems, 4 points each)		Total	/108
1. Compute $\int_{1}^{e} 9$.	$4x^2 \ln x dx$		

- **a**. $2e^3 + 1$ **b**. $2e^3 - 2$
- **c**. $2e^3$
- **d**. $3e^3 3e^2$
- **e**. $3e^3 3e^2 + 3$

Compute $\int_{1}^{2} \frac{1}{(x-2)^{4/3}} dx$ **2**. **a**. –∞ **b**. -3 **c**. -1 **d**. 3

e. ∞

Find the arclength of the parametric curve $x = t^4$ $y = \frac{1}{2}t^6$ for $0 \le t \le 1$. 3.

- <u>61</u> 54 а.

- **b**. $\frac{16}{9}$ **c**. $\frac{11}{9}$ **d**. $\frac{1}{9}$ **e**. $\frac{1}{54}$

- **4**. A 2 meter bar has linear density $\rho = 1 + x^3 \text{ kg/m}$ where x is measured from one end. Find the average density of the bar.
 - **a**. 2 kg/m
 - **b**. 3 kg/m
 - **c**. 4.5 kg/m
 - d. 5 kg/m
 - **e**. 6 kg/m

5. A 2 meter bar has linear density $\rho = 1 + x^3 \text{ kg/m}$ where x is measured from one end. Find the center of mass of the bar.

a.
$$\frac{5}{7}$$
 m

- **b**. $\frac{5}{6}$ m
- **c**. $\frac{6}{5}$ m **d**. $\frac{7}{5}$ m

d.
$$\frac{7}{5}$$
 m

e. $\frac{42}{5}$ m

- **6**. If y(x) satisfies the differential equation $\frac{dy}{dx} = \frac{x}{y}$ and the initial condition y(0) = 3, find y(4).
 - **a**. 1
 - **b**. 2
 - **c**. 3
 - **d**. 4
 - **e**. 5

Find an integrating factor for the differential equation $\frac{dy}{dx} = 2xy + \sin x$. 7.

- $e^{-\cos x}$ а.
- **b**. $e^{-\sin x}$
- **c**. $e^{\cos x}$
- **d**. e^{x^2}
- e^{-x^2} е.

- A sequence is defined recursively by: $a_1 = 4$ and $a_{n+1} = \sqrt{10a_n 16}$. Find $\lim_{n \to \infty} a_n$. 8.
 - a. 2
 - 4 b.
 - **c**. 6
 - d. 8
 - Diverges е.

10. Find the radius of convergence of the series

$$\sum_{n=1}^{\infty} \frac{2^n}{(n+1)^2} (x-3)^n.$$

- 0 а.
- **b**. $\frac{1}{3}$ **c**. $\frac{1}{2}$
- **d**. 2
- 3 е.

- **12.** Suppose the series $\sum_{n=1}^{\infty} n e^{(-n^2)}$ is approximated by its 9th partial sum $\sum_{n=1}^{9} n e^{(-n^2)}$. Use an integral to bound the error in this approximation.
 - **a**. $\frac{1}{2}e^{-64}$ **b**. $\frac{1}{2}e^{-81}$ **c**. $\frac{1}{2}e^{-100}$ **d**. $\frac{1}{2}e^{-121}$ **e**. $\frac{1}{2}e^{-144}$

13. Find the angle between the vectors $\vec{u} = \langle 1, 1, -1 \rangle$ and $\vec{v} = \langle 1, -2, -1 \rangle$.

- **a**. 0°
- **b**. 30°
- **c**. 45°
- **d**. 60°
- **e**. 90°

14. If \vec{u} points South-West and \vec{v} points Up, which way does $\vec{u} \times \vec{v}$ point?

- a. South-East
- b. North-East
- c. North-West
- d. 45° Up from North-West
- e. 45° Down from North-West

15. Find a unit vector perpendicular to both $\vec{a} = (3, -2, 1)$ and $\vec{b} = (-1, 0, 1)$.

- **a**. (-2, -4, -2)
- **b**. (-2, 4, -2)
- c. (1, -2, 1)d. $\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$
- $\mathbf{e}. \quad \left(\frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$

Work Out (4 questions, 12 points each) Show all you work.

16. Compute
$$\int_{2}^{4} \frac{8}{x^{3}\sqrt{x^{2}-4}} dx$$

17. The curve $y = x^2$ is rotated about the *y*-axis to form a bowl. If the bowl contains 8π cm³ of water, what is the height of the water in the bowl?

18. A leaking sandbag is lifted 20 ft at 2 ft/sec. The sandbag starts out weighing 50 lb but is leaking sand at 3 lb/sec. How much work is done to lift the sandbag?HINT: What is the weight of the bag when it is *y* ft above the ground?

19. Determine if the series $\sum_{n=0}^{\infty} \frac{(-1)^n 2^n}{n!}$ converges absolutely, converges but not absolutely or diverges. If it converges, find the sum. If it diverges, does it diverge to $+\infty$, $-\infty$ or neither?

Circle One:Converges AbsolutelyConverges ConditionallyDivergesFill in the Blank:Converges to______Or Circle One:Diverges to $+\infty$ $-\infty$ Neither