1. Compute \(\int_1^e 9x^2 \ln x \, dx \)

 a. \(2e^3 + 1 \)

 b. \(2e^3 - 2 \)

 c. \(2e^3 \)

 d. \(3e^3 - 3e^2 \)

 e. \(3e^3 - 3e^2 + 3 \)

2. Compute \(\int_1^e \frac{1}{(x-2)^{4/3}} \, dx \)

 a. \(-\infty \)

 b. \(-3 \)

 c. \(-1 \)

 d. \(3 \)

 e. \(\infty \)

3. Find the arclength of the parametric curve \(x = t^4 \quad y = \frac{1}{2} t^6 \) for \(0 \leq t \leq 1 \).

 a. \(\frac{61}{54} \)

 b. \(\frac{16}{9} \)

 c. \(\frac{11}{9} \)

 d. \(\frac{1}{9} \)

 e. \(\frac{1}{54} \)
4. A 2 meter bar has linear density \(\rho = 1 + x^3 \) kg/m where \(x \) is measured from one end. Find the average density of the bar.

a. 2 kg/m
b. 3 kg/m
c. 4.5 kg/m
d. 5 kg/m
e. 6 kg/m

5. A 2 meter bar has linear density \(\rho = 1 + x^3 \) kg/m where \(x \) is measured from one end. Find the center of mass of the bar.

a. \(\frac{5}{7} \) m
b. \(\frac{5}{6} \) m
c. \(\frac{6}{5} \) m
d. \(\frac{7}{5} \) m
e. \(\frac{42}{5} \) m

6. If \(y(x) \) satisfies the differential equation \(\frac{dy}{dx} = \frac{x}{y} \) and the initial condition \(y(0) = 3 \), find \(y(4) \).

a. 1
b. 2
c. 3
d. 4
e. 5
7. Find an integrating factor for the differential equation \(\frac{dy}{dx} = 2xy + \sin x \).
 a. \(e^{-\cos x} \)
 b. \(e^{-\sin x} \)
 c. \(e^{\cos x} \)
 d. \(e^{x^2} \)
 e. \(e^{-x^2} \)

8. A sequence is defined recursively by: \(a_1 = 4 \) and \(a_{n+1} = \sqrt{10a_n - 16} \). Find \(\lim_{n \to \infty} a_n \).
 a. 2
 b. 4
 c. 6
 d. 8
 e. Diverges

9. \(\sum_{n=2}^{\infty} \frac{3^n}{2^{2n-1}} = \)
 a. 2
 b. \(\frac{9}{14} \)
 c. \(\frac{9}{2} \)
 d. 4
 e. Diverges
10. Find the radius of convergence of the series \[\sum_{n=1}^{\infty} \frac{2^n}{(n+1)^2} (x - 3)^n. \]

a. 0
b. \(\frac{1}{3} \)
c. \(\frac{1}{2} \)
d. 2
e. 3

11. \(\lim_{x \to 0} \frac{\sin x - x \cos x}{x^3} = \)

a. \(\frac{1}{6} \)
b. \(\frac{1}{3} \)
c. \(\frac{1}{2} \)
d. \(\frac{2}{3} \)
e. \(\infty \)

12. Suppose the series \(\sum_{n=1}^{\infty} n e^{-n^2} \) is approximated by its 9th partial sum \(\sum_{n=1}^{9} n e^{-n^2} \).

Use an integral to bound the error in this approximation.

a. \(\frac{1}{2} e^{-64} \)
b. \(\frac{1}{2} e^{-81} \)
c. \(\frac{1}{2} e^{-100} \)
d. \(\frac{1}{2} e^{-121} \)
e. \(\frac{1}{2} e^{-144} \)
13. Find the angle between the vectors $\vec{u} = \langle 1, 1 \rangle$ and $\vec{v} = \langle 1, -2, -1 \rangle$.

 a. 0°
 b. 30°
 c. 45°
 d. 60°
 e. 90°

14. If \vec{u} points South-West and \vec{v} points Up, which way does $\vec{u} \times \vec{v}$ point?

 a. South-East
 b. North-East
 c. North-West
 d. 45° Up from North-West
 e. 45° Down from North-West

15. Find a unit vector perpendicular to both $\vec{a} = (3, -2, 1)$ and $\vec{b} = (-1, 0, 1)$.

 a. $(-2, -4, -2)$
 b. $(-2, 4, -2)$
 c. $(1, -2, 1)$
 d. $\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$
 e. $\left(\frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$
16. Compute \[\int_{x=2}^{x=4} \frac{8}{x^3 \sqrt{x^2 - 4}} \, dx \]

17. The curve \(y = x^2 \) is rotated about the \(y \)-axis to form a bowl. If the bowl contains \(8\pi \) cm\(^3\) of water, what is the height of the water in the bowl?
18. A leaking sandbag is lifted 20 ft at 2 ft/sec. The sandbag starts out weighing 50 lb but is leaking sand at 3 lb/sec. How much work is done to lift the sandbag?
 HINT: What is the weight of the bag when it is y ft above the ground?

19. Determine if the series $\sum_{n=0}^{\infty} \frac{(-1)^n 2^n}{n!}$ converges absolutely, converges but not absolutely or diverges.
 If it converges, find the sum. If it diverges, does it diverge to $+\infty$, $-\infty$ or neither?

 Circle One: Converges Absolutely Converges Conditionally Diverges

 Fill in the Blank: Converges to ____________

 Or Circle One: Diverges to $+\infty$ $-\infty$ Neither