MATH 152:

Calculus II Project 2:

Select your project team: (Recommended: 1-2 students.)

1. Name: \qquad Sec: \qquad
Email: \qquad Phone: \qquad
IM: \qquad Facebook: \qquad
2. Name: \qquad Sec: \qquad

Email: \qquad Phone: \qquad
IM: \qquad Facebook: \qquad
Please indicate 3 choices.
Possible Projects from Chapter 12.
12.19: \qquad Curves Generated by Rolling Circles
12.20: \qquad The Wankel Rotary Engine
12.21: \qquad Shakespeare's Shylock
12.23: \qquad Pension Funds

Possible Maplets:

Derivatives: Applications:

1. ___Increasing or Decreasing by Factoring Deriv and using Number Line

Find the intervals on which a function is increasing or decreasing by factoring the derivative and plotting its sign on a number line.
2. ___Concave Up or Down by Factoring Second Deriv and using Number Line

Find the intervals on which a function is concave up or down by factoring the second derivative and plotting its sign on a number line.

Integrals: Foundations:

3. ___Midpoint Riemann Sums

Compute a Riemann sum using the midpoint rule.
4. ___Limits of Sums

Compute limits of sums of polynomials using the formulas for the sum of $1, \mathrm{i}_{1} \mathrm{i}^{\wedge} 2, \mathrm{i}^{\wedge} 3$ and $\mathrm{i}^{\wedge} 4$.
5. ___Areas by Riemann Sums

Compute areas by using Riemann sums.
6. ___ Properties of Integrals

Learn about the properties of integrals.
7. ___Int by Parts Twice and Solve

Compute integrals of products of trig and exponential functions.
8. ___Hard Trig Integrals

Compute integrals of products of even powers of trig functions.
9. ___Improper Integrals at Interior Point

Compute integrals which are improper at an interior point.

Integrals: Applications:

10. \qquad Area between Curves that Cross
Compute the area between two curves which intersect once in the interval.
11. ___ Arc Length for Parametric Curves

Add parametric curves to the maplet on arc length.
12.
___Surface Area for Parametric Curves
Add parametric curves to the maplet on surface area.

Differential Equations:

13. ___ Direction Fields II

Given the direction field plot, identify the differential equation.
14. ___Newton's Law of Heating

Set up and solve the differential equations for the heating or cooling of an object.
15. ___Kirchhoff's Laws

Set up the differential equation for a single circuit with resistance, capacitance and inductance.
16. ___Electric Circuits

Solve the differential equations describing the charge or current in an electric circuit with resistance and either capacitance or inductance.

Sequences and Series:

17. ____New Numerical Series from Old

Combine series using sums, diferences and constant multiples.
18. ___ Power Series: Center and Radius of Conv

Find the center and radius of convergence of a power series.
19. \qquad Power Series: Interval of Conv
Given the center and radius of convergence of a power series, find its interval of convergence.
20. ___New Power Series from Old

Combine power series using sums, differences, constant multiples, substitutions, derivatives and integrals.
21. __Compute Taylor Polynomials
Compute a Taylor polynomial for a function.
22. ___Approximate functions using Taylor Polynomials

Approximate the value of a function using a Taylor polynomial at a nearby point.
23. \qquad Compute Taylor Series
Find the general term of the Taylor series for a function.
24. ___New Maclaurin Series from Old

Combine Maclaurin series using sums, differences, constant multiples, substitutions, derivatives and integrals.
25. \qquad Summing Series Using Maclaurin Series
Sum a numerical series by evaluating a Maclaurin series.
26. ___Deriv by Taylor Series

Evaluate a higher order derivative by looking at the coefficients of a Taylor series.

Other:

27. \qquad Title: \qquad
Description:
