Name	Section		1-14	/56
MATH 152 Honors	FINAL EXAM	Spring 2014	15	/22
Sections 201-202		P. Yasskin		
Multiple Choice: (14 problems, 4 points each)			16	/20
•		,	17	/4
			18	/4
			Total	/106

- 1. Find the area under the curve $y = \frac{1}{x^2 + 1}$ above the interval [0,1].
 - **a**. $\frac{1}{4}$ **b**. $\frac{\pi}{4}$ **c**. $\frac{1}{2}$ **d**. 1 **e**. $\frac{\pi}{2}$
- **2**. The region under the curve $y = \frac{1}{x^2 + 1}$ above the interval [0,1] is revolved about the *y*-axis. Find the volume of the resulting solid.
 - **a**. $\pi \ln(2)$
 - **b**. $\pi \ln(2) \pi$
 - **c**. $2\pi \ln(2)$
 - **d**. $4\pi \ln(2)$
 - **e**. $4\pi \ln(2) 4\pi$

A plate with constant density ρ has the shape of the region below $y = \frac{1}{x^2 + 1}$ above the 3. interval [0,1]. Find the *x*-coordinate of its center of mass.

- **a**. $\frac{\pi}{2} \ln 2$

- **b.** $\frac{2}{\pi} \ln 2$ **c.** $\frac{\pi}{2 \ln 2}$ **d.** $\frac{2}{\rho \ln 2}$
- e. $\frac{\rho}{2}\ln 2$

4. Compute
$$\int_{0}^{\pi/4} \frac{\sec^{2}\theta}{\tan^{2}\theta} d\theta.$$

a. $-\infty$
b. -1
c. $\frac{1}{2}$
d. 1
e. ∞

5. Compute $\int \frac{x^2}{\sqrt{1-x^2}} dx$. HINT: $\sin(2\theta) = 2\sin\theta\cos\theta$ **a**. $\frac{1}{2} \arcsin x - \frac{x}{3} (1 - x^2)^{3/2} + C$ **b**. $\frac{1}{2} \arcsin x + x\sqrt{1-x^2} + C$ **c**. $\frac{1}{2} \arcsin x - x\sqrt{1-x^2} + C$ **d**. $\frac{1}{2} \arcsin x - \frac{x}{2}\sqrt{1-x^2} + C$ **e**. $\frac{1}{2} \arcsin x + \frac{x}{2}\sqrt{1-x^2} + C$

- 6. Compute $\int (\ln x)^2 dx$. HINT: $u = (\ln x)^2$.
 - **a.** $x \ln^2 x x^2 \ln x \frac{1}{2}x^2 + C$ **b.** $x \ln^2 x - x^2 \ln x + \frac{1}{2}x^2 + C$
 - $\mathbf{c}. \quad x\ln^2 x 2x\ln x 2x + C$
 - $\mathbf{d.} \quad x\ln^2 x 2x\ln x + 2x + C$
 - **e**. $x \ln^2 x 2x \ln x + 4x + C$
- 7. Which of the following is the general partial fraction expansion of

$$\frac{4x^2+5}{(x-2)^2(x^2+9)^2}?$$

- **a.** $\frac{A}{(x-2)^2} + \frac{Bx+C}{(x^2+9)^2}$ **b.** $\frac{Ax+B}{(x-2)^2} + \frac{Cx+D}{(x^2+9)^2}$ **c.** $\frac{A}{(x-2)} + \frac{B}{(x-2)^2} + \frac{Cx+D}{(x^2+9)} + \frac{Ex+F}{(x^2+9)^2}$ **d.** $\frac{A}{(x-2)} + \frac{B}{(x-2)^2} + \frac{Cx}{(x^2+9)} + \frac{Dx}{(x^2+9)^2}$ **e.** $\frac{A}{(x-2)} + \frac{Bx+C}{(x-2)^2} + \frac{D}{(x^2+9)} + \frac{Ex+F}{(x^2+9)^2}$
- 8. The curve $x = y^3$ between y = 0 and y = 1 is rotated about the *y*-axis. Find the area of the resulting surface.
 - **a**. $\frac{\pi}{27}(10^{3/2}-1)$
 - **b**. $48\pi(10^{3/2}-1)$
 - c. $\frac{7}{27}\pi$
 - **d**. 336π
 - **e**. $48\pi 10^{3/2}$

Solve the differential equation $\frac{dy}{dx} = \frac{y}{x}$ with y(1) = 3. Then y(3) =9. **a**. $\frac{1}{3}$

- **b**. 1
- **c**. 3
- **d**. 6
- **e**. 9

10. Solve the differential equation $x\frac{dy}{dx} = y + x^2$ with y(1) = 2. Then y(2) =

- **a**. $\frac{1}{2}$ **b**. 2 **c**. $\frac{13}{6}$ **d**. 3
- **e**. 6
- 11. A ball is dropped from 27 feet and bounces to $\frac{2}{3}$ of its previous height on each bounce. Find the total length travelled during an infinite number of bounces.
 - 54 a.
 - b. 81
 - 108 С.
 - d. 135
 - 162 е.

12. Compute $\lim_{x \to 0} \frac{\sin x - x \cos x}{x^3}$ a. $\frac{1}{3}$ b. $\frac{1}{6}$ c. 0d. ∞ e. $-\infty$

13. Compute $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{9^n (2n+1)!}$ **a.** $\frac{\sqrt{3}}{2}$ **b.** $\frac{3\sqrt{3}}{2}$ **c.** $\frac{\sqrt{3}}{6}$ **d.** $\frac{3}{2}$ **e.** 0

14. Find the center and radius of the sphere $x^2 - 4x + y^2 + z^2 + 6z + 4 = 0$

- **a**. center: (-2, 0, 3) radius: R = 2
- **b**. center: (2, 0, -3) radius: R = 3
- **c**. center: (-2, 0, 3) radius: R = 3
- **d**. center: (2, 0, -3) radius: R = 9
- **e**. center: (-2, 0, 3) radius: R = 9

Work Out (3 questions, Points indicated)

Show all you work.

15. (22 points) Consider the series
$$S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{2^{n-1}}$$
.

a. (4) Determine whether the series is absolutely convergent, convergent but not absolutely convergent or divergent.

- **b**. (1) Compute S_7 , the 7th partial sum for S. Do not simplify.
- **c**. (3) Find a bound on the remainder $|R_7| = |S S_7|$ when S_7 is used to approximate *S*. Name the theorem you used.
- d. (1 Real easy) Find a power series S(x) centered at 0 whose value at $x = \frac{-1}{2}$ is the given series *S*, i.e. $S\left(\frac{-1}{2}\right) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{2^{n-1}}$.

#15 continued.

Recall
$$S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{2^{n-1}}.$$

e. (10) Find the interval of convergence of the power series S(x) from part (d). Give the radius and check the endpoints.

f. (2) Find a function f(x) whose Maclaurin series is the power series S(x) from part (d).

g. (1) Use f(x) to find the sum of the series *S*.

16. (20 points) Let $f(x) = \ln(x)$.

a. (6) Find the Taylor series for f(x) centered at x = 4.

b. (11) The Taylor series for f(x) centered at x = 3 is $T(x) = \ln 3 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3^n n} (x-3)^n$. Find the interval of convergence for the Taylor series centered at x = 3 Give the radius and check the endpoints.

c. (3) If the cubic Taylor polynomial centered at x = 3 is used to approximate $\ln(x)$ on the interval [2,5], use the Taylor's Inequality to bound the error.

Taylor's Inequality:

Let $T_n(x)$ be the *n*th-degree Taylor polynomial for f(x) centered at x = aand let $R_n(x) = f(x) - T_n(x)$ be the remainder. Then $|R_n(x)| \le \frac{M}{(n+1)!} |x - a|^{n+1}$

provided $M \ge |f^{(n+1)}(c)|$ for all c between a and x.

17. (4 points) When a ball with mass, m, is dropped from a height, h, and falls under the forces of gravity with acceleration, g, and air resistance with drag coefficient, k, the altitude, y(t), satisfies the differential equation,

$$m\frac{d^2y}{dt^2} = -mg - k\frac{dy}{dt}$$

The solution is

$$y(t) = h - \frac{m^2}{k^2} g e^{-\frac{kt}{m}} + \frac{m^2}{k^2} g - \frac{m}{k} g t$$

Verify that this solution reduces to the standard freefall formula (no air resistance) by taking the **limit** of the solution as k approaches 0. (DO NOT SOLVE ANY DIFFERENTIAL EQUATIONS.)

18. (4 points) The curve $x = y^2$ for $0 \le y \le \sqrt{2}$ is revolved around the *x*-axis. Find the area of the resulting surface.